Cargando…
Trypanosoma brucei UDP-galactose-4′-epimerase in ternary complex with NAD(+) and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose
The structure of the NAD-dependent oxidoreductase UDP-galactose-4′-epimerase from Trypanosoma brucei in complex with cofactor and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose has been determined using diffraction data to 2.7 Å resolution. Despite the high level of sequence and structure...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2006
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2242870/ https://www.ncbi.nlm.nih.gov/pubmed/16946458 http://dx.doi.org/10.1107/S1744309106028740 |
Sumario: | The structure of the NAD-dependent oxidoreductase UDP-galactose-4′-epimerase from Trypanosoma brucei in complex with cofactor and the substrate analogue UDP-4-deoxy-4-fluoro-α-d-galactose has been determined using diffraction data to 2.7 Å resolution. Despite the high level of sequence and structure conservation between the trypanosomatid enzyme and those from humans, yeast and bacteria, the binding of the 4-fluoro-α-d-galactose moiety is distinct from previously reported structures. Of particular note is the observation that when bound to the T. brucei enzyme, the galactose moiety of this fluoro-derivative is rotated approximately 180° with respect to the orientation of the hexose component of UDP-glucose when in complex with the human enzyme. The architecture of the catalytic centre is designed to effectively bind different orientations of the hexose, a finding that is consistent with a mechanism that requires the sugar to maintain a degree of flexibility within the active site. |
---|