Cargando…
Three factors underlying incorrect in silico predictions of essential metabolic genes
BACKGROUND: The indispensability of certain genes in an organism is important for studies of microorganism physiology, antibiotic targeting, and the engineering of minimal genomes. Time and resource intensive genome-wide experimental screens can be conducted to determine which genes are likely essen...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248557/ https://www.ncbi.nlm.nih.gov/pubmed/18248675 http://dx.doi.org/10.1186/1752-0509-2-14 |
_version_ | 1782151008524173312 |
---|---|
author | Becker, Scott A Palsson, Bernhard O |
author_facet | Becker, Scott A Palsson, Bernhard O |
author_sort | Becker, Scott A |
collection | PubMed |
description | BACKGROUND: The indispensability of certain genes in an organism is important for studies of microorganism physiology, antibiotic targeting, and the engineering of minimal genomes. Time and resource intensive genome-wide experimental screens can be conducted to determine which genes are likely essential. For metabolic genes, a reconstructed metabolic network can be used to predict which genes are likely essential. The success rate of these predictions is less than desirable, especially with regard to comprehensively locating essential genes. RESULTS: We show that genes that are falsely predicted to be non-essential (for growth) share three characteristics across multiple organisms and growth media. First, these genes are on average connected to fewer reactions in the network than correctly predicted essential genes, suggesting incomplete knowledge of the functions of these genes. Second, they are more likely to be blocked (their associated reactions are prohibited from carrying flux in the given condition) than other genes, implying incomplete knowledge of metabolism surrounding these genes. Third, they are connected to less overcoupled metabolites. CONCLUSION: The results presented herein indicate genes that cannot be correctly predicted as essential have commonalities in different organisms. These elucidated failure modes can be used to better understand the biology of individual organisms and to improve future predictions. |
format | Text |
id | pubmed-2248557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22485572008-02-21 Three factors underlying incorrect in silico predictions of essential metabolic genes Becker, Scott A Palsson, Bernhard O BMC Syst Biol Research Article BACKGROUND: The indispensability of certain genes in an organism is important for studies of microorganism physiology, antibiotic targeting, and the engineering of minimal genomes. Time and resource intensive genome-wide experimental screens can be conducted to determine which genes are likely essential. For metabolic genes, a reconstructed metabolic network can be used to predict which genes are likely essential. The success rate of these predictions is less than desirable, especially with regard to comprehensively locating essential genes. RESULTS: We show that genes that are falsely predicted to be non-essential (for growth) share three characteristics across multiple organisms and growth media. First, these genes are on average connected to fewer reactions in the network than correctly predicted essential genes, suggesting incomplete knowledge of the functions of these genes. Second, they are more likely to be blocked (their associated reactions are prohibited from carrying flux in the given condition) than other genes, implying incomplete knowledge of metabolism surrounding these genes. Third, they are connected to less overcoupled metabolites. CONCLUSION: The results presented herein indicate genes that cannot be correctly predicted as essential have commonalities in different organisms. These elucidated failure modes can be used to better understand the biology of individual organisms and to improve future predictions. BioMed Central 2008-02-04 /pmc/articles/PMC2248557/ /pubmed/18248675 http://dx.doi.org/10.1186/1752-0509-2-14 Text en Copyright © 2008 Becker and Palsson; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Becker, Scott A Palsson, Bernhard O Three factors underlying incorrect in silico predictions of essential metabolic genes |
title | Three factors underlying incorrect in silico predictions of essential metabolic genes |
title_full | Three factors underlying incorrect in silico predictions of essential metabolic genes |
title_fullStr | Three factors underlying incorrect in silico predictions of essential metabolic genes |
title_full_unstemmed | Three factors underlying incorrect in silico predictions of essential metabolic genes |
title_short | Three factors underlying incorrect in silico predictions of essential metabolic genes |
title_sort | three factors underlying incorrect in silico predictions of essential metabolic genes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2248557/ https://www.ncbi.nlm.nih.gov/pubmed/18248675 http://dx.doi.org/10.1186/1752-0509-2-14 |
work_keys_str_mv | AT beckerscotta threefactorsunderlyingincorrectinsilicopredictionsofessentialmetabolicgenes AT palssonbernhardo threefactorsunderlyingincorrectinsilicopredictionsofessentialmetabolicgenes |