Cargando…
Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics
BACKGROUND: High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false posit...
Autores principales: | Pfeifer, Nico, Leinenbach, Andreas, Huber, Christian G, Kohlbacher, Oliver |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254445/ https://www.ncbi.nlm.nih.gov/pubmed/18053132 http://dx.doi.org/10.1186/1471-2105-8-468 |
Ejemplares similares
-
A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data
por: Sturm, Marc, et al.
Publicado: (2007) -
Chromatographically separable rotamers of an unhindered amide
por: Geffe, Mario, et al.
Publicado: (2014) -
Recent advances in proteolysis and peptide/protein separation by chromatographic strategies
por: Zhang, XiangMin, et al.
Publicado: (2010) -
Chromatographic separation of glycated peptide isomers derived from glucose and fructose
por: Schmutzler, Sebastian, et al.
Publicado: (2022) -
Study on the Interaction of a Peptide Targeting Specific G-Quadruplex Structures Based on Chromatographic Retention Behavior
por: Wang, Ju, et al.
Publicado: (2023)