Cargando…
Viral genome sequencing by random priming methods
BACKGROUND: Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global vira...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254600/ https://www.ncbi.nlm.nih.gov/pubmed/18179705 http://dx.doi.org/10.1186/1471-2164-9-5 |
_version_ | 1782151202480324608 |
---|---|
author | Djikeng, Appolinaire Halpin, Rebecca Kuzmickas, Ryan DePasse, Jay Feldblyum, Jeremy Sengamalay, Naomi Afonso, Claudio Zhang, Xinsheng Anderson, Norman G Ghedin, Elodie Spiro, David J |
author_facet | Djikeng, Appolinaire Halpin, Rebecca Kuzmickas, Ryan DePasse, Jay Feldblyum, Jeremy Sengamalay, Naomi Afonso, Claudio Zhang, Xinsheng Anderson, Norman G Ghedin, Elodie Spiro, David J |
author_sort | Djikeng, Appolinaire |
collection | PubMed |
description | BACKGROUND: Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. RESULTS: We have adapted the SISPA methodology [1-3] to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. CONCLUSION: The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections. |
format | Text |
id | pubmed-2254600 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22546002008-02-27 Viral genome sequencing by random priming methods Djikeng, Appolinaire Halpin, Rebecca Kuzmickas, Ryan DePasse, Jay Feldblyum, Jeremy Sengamalay, Naomi Afonso, Claudio Zhang, Xinsheng Anderson, Norman G Ghedin, Elodie Spiro, David J BMC Genomics Methodology Article BACKGROUND: Most emerging health threats are of zoonotic origin. For the overwhelming majority, their causative agents are RNA viruses which include but are not limited to HIV, Influenza, SARS, Ebola, Dengue, and Hantavirus. Of increasing importance therefore is a better understanding of global viral diversity to enable better surveillance and prediction of pandemic threats; this will require rapid and flexible methods for complete viral genome sequencing. RESULTS: We have adapted the SISPA methodology [1-3] to genome sequencing of RNA and DNA viruses. We have demonstrated the utility of the method on various types and sources of viruses, obtaining near complete genome sequence of viruses ranging in size from 3,000–15,000 kb with a median depth of coverage of 14.33. We used this technique to generate full viral genome sequence in the presence of host contaminants, using viral preparations from cell culture supernatant, allantoic fluid and fecal matter. CONCLUSION: The method described is of great utility in generating whole genome assemblies for viruses with little or no available sequence information, viruses from greatly divergent families, previously uncharacterized viruses, or to more fully describe mixed viral infections. BioMed Central 2008-01-07 /pmc/articles/PMC2254600/ /pubmed/18179705 http://dx.doi.org/10.1186/1471-2164-9-5 Text en Copyright © 2008 Djikeng et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Article Djikeng, Appolinaire Halpin, Rebecca Kuzmickas, Ryan DePasse, Jay Feldblyum, Jeremy Sengamalay, Naomi Afonso, Claudio Zhang, Xinsheng Anderson, Norman G Ghedin, Elodie Spiro, David J Viral genome sequencing by random priming methods |
title | Viral genome sequencing by random priming methods |
title_full | Viral genome sequencing by random priming methods |
title_fullStr | Viral genome sequencing by random priming methods |
title_full_unstemmed | Viral genome sequencing by random priming methods |
title_short | Viral genome sequencing by random priming methods |
title_sort | viral genome sequencing by random priming methods |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2254600/ https://www.ncbi.nlm.nih.gov/pubmed/18179705 http://dx.doi.org/10.1186/1471-2164-9-5 |
work_keys_str_mv | AT djikengappolinaire viralgenomesequencingbyrandomprimingmethods AT halpinrebecca viralgenomesequencingbyrandomprimingmethods AT kuzmickasryan viralgenomesequencingbyrandomprimingmethods AT depassejay viralgenomesequencingbyrandomprimingmethods AT feldblyumjeremy viralgenomesequencingbyrandomprimingmethods AT sengamalaynaomi viralgenomesequencingbyrandomprimingmethods AT afonsoclaudio viralgenomesequencingbyrandomprimingmethods AT zhangxinsheng viralgenomesequencingbyrandomprimingmethods AT andersonnormang viralgenomesequencingbyrandomprimingmethods AT ghedinelodie viralgenomesequencingbyrandomprimingmethods AT spirodavidj viralgenomesequencingbyrandomprimingmethods |