Cargando…
Exploiting likely-positive and unlabeled data to improve the identification of protein-protein interaction articles
BACKGROUND: Experimentally verified protein-protein interactions (PPI) cannot be easily retrieved by researchers unless they are stored in PPI databases. The curation of such databases can be made faster by ranking newly-published articles' relevance to PPI, a task which we approach here by des...
Autores principales: | Tsai, Richard Tzong-Han, Hung, Hsi-Chuan, Dai, Hong-Jie, Lin, Yi-Wen, Hsu, Wen-Lian |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2259404/ https://www.ncbi.nlm.nih.gov/pubmed/18315856 http://dx.doi.org/10.1186/1471-2105-9-S1-S3 |
Ejemplares similares
-
Efficient use of unlabeled data for protein sequence classification: a comparative study
por: Kuksa, Pavel, et al.
Publicado: (2009) -
Learning an enriched representation from unlabeled data for protein-protein interaction extraction
por: Li, Yanpeng, et al.
Publicado: (2010) -
NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2006) -
HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features
por: Tsai, Richard Tzong-Han, et al.
Publicado: (2009) -
Positive-unlabeled learning for disease gene identification
por: Yang, Peng, et al.
Publicado: (2012)