Cargando…
Transmembrane helix prediction using amino acid property features and latent semantic analysis
BACKGROUND: Prediction of transmembrane (TM) helices by statistical methods suffers from lack of sufficient training data. Current best methods use hundreds or even thousands of free parameters in their models which are tuned to fit the little data available for training. Further, they are often res...
Autores principales: | Ganapathiraju, Madhavi, Balakrishnan, N, Reddy, Raj, Klein-Seetharaman, Judith |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2259405/ https://www.ncbi.nlm.nih.gov/pubmed/18315857 http://dx.doi.org/10.1186/1471-2105-9-S1-S4 |
Ejemplares similares
-
Active machine learning for transmembrane helix prediction
por: Osmanbeyoglu, Hatice U, et al.
Publicado: (2010) -
An efficient heuristic method for active feature acquisition and its application to protein-protein interaction prediction
por: Thahir, Mohamed, et al.
Publicado: (2012) -
Alternative paths in HIV-1 targeted human signal transduction pathways
por: Balakrishnan, Sivaraman, et al.
Publicado: (2009) -
A mixture of feature experts approach for protein-protein interaction prediction
por: Qi, Yanjun, et al.
Publicado: (2007) -
Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing
por: Su, Emily Chia-Yu, et al.
Publicado: (2012)