Cargando…
Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments
BACKGROUND: Identification of differentially expressed genes is a typical objective when analyzing gene expression data. Recently, Bayesian hierarchical models have become increasingly popular to solve this type of problems. These models show good performance in accommodating noise, variability and...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2259410/ https://www.ncbi.nlm.nih.gov/pubmed/18315862 http://dx.doi.org/10.1186/1471-2105-9-S1-S9 |
Sumario: | BACKGROUND: Identification of differentially expressed genes is a typical objective when analyzing gene expression data. Recently, Bayesian hierarchical models have become increasingly popular to solve this type of problems. These models show good performance in accommodating noise, variability and low replication of microarray data. However, the correlation between different fluorescent signals measured from a gene spot is ignored, which can diversely affect the data analysis step. In fact, the intensities of the two signals are significantly correlated across samples. The larger the log-transformed intensities are, the smaller the correlation is. RESULTS: Motivated by the complicated error relations in microarray data, we propose a multivariate hierarchical Bayesian framework for data analysis in the replicated microarray experiments. Gene expression data are modelled by a multivariate normal distribution, parameterized by the corresponding mean vectors and covariance matrixes with a conjugate prior distribution. Within the Bayesian framework, a generalized likelihood ratio test (GLRT) is also developed to infer the gene expression patterns. Simulation studies show that the proposed approach presents better operating characteristics and lower false discovery rate (FDR) than existing methods, especially when the correlation coefficient is large. The approach is illustrated with two examples of microarray analysis. The proposed method successfully detects significant genes closely related to the experimental states, which are verified by the biological information. CONCLUSIONS: The multivariate Bayesian model, compatible with the dependence between mean and variance in the univariate Bayesian model, relaxes the constant coefficient of variation assumption between measurements by adding a covariance structure. This model improves the identification of differentially expressed genes significantly since the Bayesian model fit well with the microarray data. |
---|