Cargando…
Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments
BACKGROUND: Identification of differentially expressed genes is a typical objective when analyzing gene expression data. Recently, Bayesian hierarchical models have become increasingly popular to solve this type of problems. These models show good performance in accommodating noise, variability and...
Autores principales: | Zhao, Hongya, Chan, Kwok-Leung, Cheng, Lee-Ming, Yan, Hong |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2259410/ https://www.ncbi.nlm.nih.gov/pubmed/18315862 http://dx.doi.org/10.1186/1471-2105-9-S1-S9 |
Ejemplares similares
-
Bayesian hierarchical modeling of means and covariances of gene expression data within families
por: Pique-Regi, Roger, et al.
Publicado: (2007) -
Investigation of reproducibility of differentially expressed genes in DNA microarrays through statistical simulation
por: Fan, Xiaohui, et al.
Publicado: (2009) -
The balance of reproducibility, sensitivity, and specificity of lists of differentially expressed genes in microarray studies
por: Shi, Leming, et al.
Publicado: (2008) -
A Bayesian hierarchical gene model on latent genotypes for genome-wide association studies
por: Johnston, Ian, et al.
Publicado: (2014) -
Modeling of multivariate longitudinal phenotypes in family genetic studies with Bayesian multiplicity adjustment
por: Ding, Lili, et al.
Publicado: (2014)