Cargando…

Direct Isolation, Culture and Transplant of Mouse Skeletal Muscle Derived Endothelial Cells with Angiogenic Potential

BACKGROUND: Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. METHODOLOGY: By utilizing multicolor fluorescent-a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ieronimakis, Nicholas, Balasundaram, Gayathri, Reyes, Morayma
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2262143/
https://www.ncbi.nlm.nih.gov/pubmed/18335025
http://dx.doi.org/10.1371/journal.pone.0001753
Descripción
Sumario:BACKGROUND: Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. METHODOLOGY: By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1(+), CD31(+), CD34(dim) and CD45(− )cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. CONCLUSION: This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications.