Cargando…
Microarray data mining using landmark gene-guided clustering
BACKGROUND: Clustering is a popular data exploration technique widely used in microarray data analysis. Most conventional clustering algorithms, however, generate only one set of clusters independent of the biological context of the analysis. This is often inadequate to explore data from different b...
Autores principales: | Chopra, Pankaj, Kang, Jaewoo, Yang, Jiong, Cho, HyungJun, Kim, Heenam Stanley, Lee, Min-Goo |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2262871/ https://www.ncbi.nlm.nih.gov/pubmed/18267003 http://dx.doi.org/10.1186/1471-2105-9-92 |
Ejemplares similares
-
Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data
por: Jain, Nitin, et al.
Publicado: (2005) -
TINA manual landmarking tool: software for the precise digitization of 3D landmarks
por: Schunke, Anja C, et al.
Publicado: (2012) -
Cluster stability scores for microarray data in cancer studies
por: Smolkin, Mark, et al.
Publicado: (2003) -
SegMine workflows for semantic microarray data analysis in Orange4WS
por: Podpečan, Vid, et al.
Publicado: (2011) -
SplicerAV: a tool for mining microarray expression data for changes in RNA processing
por: Robinson, Timothy J, et al.
Publicado: (2010)