Cargando…
Dissecting the logical types of network control in gene expression profiles
BACKGROUND: In the bacterium Escherichia coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators – abundant DNA architectural proteins of the bacterial nucleoid binding multiple sites with a wi...
Autores principales: | , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263018/ https://www.ncbi.nlm.nih.gov/pubmed/18284674 http://dx.doi.org/10.1186/1752-0509-2-18 |
_version_ | 1782151428864737280 |
---|---|
author | Marr, Carsten Geertz, Marcel Hütt, Marc-Thorsten Muskhelishvili, Georgi |
author_facet | Marr, Carsten Geertz, Marcel Hütt, Marc-Thorsten Muskhelishvili, Georgi |
author_sort | Marr, Carsten |
collection | PubMed |
description | BACKGROUND: In the bacterium Escherichia coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators – abundant DNA architectural proteins of the bacterial nucleoid binding multiple sites with a wide range of affinities and thus modulating the superhelical density of DNA. The first form of transcriptional regulation is predominantly pairwise and specific, representing digitial control, while the second form is (in strength and distribution) continuous, representing analog control. RESULTS: Here we look at the properties of effective networks derived from significant gene expression changes under variation of the two forms of control and find that upon limitations of one type of control (caused e.g. by mutation of a global DNA architectural factor) the other type can compensate for compromised regulation. Mutations of global regulators significantly enhance the digital control, whereas in the presence of global DNA architectural proteins regulation is mostly of the analog type, coupling spatially neighboring genomic loci. Taken together our data suggest that two logically distinct – digital and analog – types of control are balancing each other. CONCLUSION: By revealing two distinct logical types of control, our approach provides basic insights into both the organizational principles of transcriptional regulation and the mechanisms buffering genetic flexibility. We anticipate that the general concept of distinguishing logical types of control will apply to many complex biological networks. |
format | Text |
id | pubmed-2263018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22630182008-03-06 Dissecting the logical types of network control in gene expression profiles Marr, Carsten Geertz, Marcel Hütt, Marc-Thorsten Muskhelishvili, Georgi BMC Syst Biol Research Article BACKGROUND: In the bacterium Escherichia coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators – abundant DNA architectural proteins of the bacterial nucleoid binding multiple sites with a wide range of affinities and thus modulating the superhelical density of DNA. The first form of transcriptional regulation is predominantly pairwise and specific, representing digitial control, while the second form is (in strength and distribution) continuous, representing analog control. RESULTS: Here we look at the properties of effective networks derived from significant gene expression changes under variation of the two forms of control and find that upon limitations of one type of control (caused e.g. by mutation of a global DNA architectural factor) the other type can compensate for compromised regulation. Mutations of global regulators significantly enhance the digital control, whereas in the presence of global DNA architectural proteins regulation is mostly of the analog type, coupling spatially neighboring genomic loci. Taken together our data suggest that two logically distinct – digital and analog – types of control are balancing each other. CONCLUSION: By revealing two distinct logical types of control, our approach provides basic insights into both the organizational principles of transcriptional regulation and the mechanisms buffering genetic flexibility. We anticipate that the general concept of distinguishing logical types of control will apply to many complex biological networks. BioMed Central 2008-02-19 /pmc/articles/PMC2263018/ /pubmed/18284674 http://dx.doi.org/10.1186/1752-0509-2-18 Text en Copyright © 2008 Marr et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Marr, Carsten Geertz, Marcel Hütt, Marc-Thorsten Muskhelishvili, Georgi Dissecting the logical types of network control in gene expression profiles |
title | Dissecting the logical types of network control in gene expression profiles |
title_full | Dissecting the logical types of network control in gene expression profiles |
title_fullStr | Dissecting the logical types of network control in gene expression profiles |
title_full_unstemmed | Dissecting the logical types of network control in gene expression profiles |
title_short | Dissecting the logical types of network control in gene expression profiles |
title_sort | dissecting the logical types of network control in gene expression profiles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263018/ https://www.ncbi.nlm.nih.gov/pubmed/18284674 http://dx.doi.org/10.1186/1752-0509-2-18 |
work_keys_str_mv | AT marrcarsten dissectingthelogicaltypesofnetworkcontrolingeneexpressionprofiles AT geertzmarcel dissectingthelogicaltypesofnetworkcontrolingeneexpressionprofiles AT huttmarcthorsten dissectingthelogicaltypesofnetworkcontrolingeneexpressionprofiles AT muskhelishviligeorgi dissectingthelogicaltypesofnetworkcontrolingeneexpressionprofiles |