Cargando…

Modulation of Brain Resting-State Networks by Sad Mood Induction

BACKGROUND: There is growing interest in the nature of slow variations of the blood oxygen level-dependent (BOLD) signal observed in functional MRI resting-state studies. In humans, these slow BOLD variations are thought to reflect an underlying or intrinsic form of brain functional connectivity in...

Descripción completa

Detalles Bibliográficos
Autores principales: Harrison, Ben J., Pujol, Jesus, Ortiz, Hector, Fornito, Alex, Pantelis, Christos, Yücel, Murat
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2263138/
https://www.ncbi.nlm.nih.gov/pubmed/18350136
http://dx.doi.org/10.1371/journal.pone.0001794
Descripción
Sumario:BACKGROUND: There is growing interest in the nature of slow variations of the blood oxygen level-dependent (BOLD) signal observed in functional MRI resting-state studies. In humans, these slow BOLD variations are thought to reflect an underlying or intrinsic form of brain functional connectivity in discrete neuroanatomical systems. While these ‘resting-state networks’ may be relatively enduring phenomena, other evidence suggest that dynamic changes in their functional connectivity may also emerge depending on the brain state of subjects during scanning. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we examined healthy subjects (n = 24) with a mood induction paradigm during two continuous fMRI recordings to assess the effects of a change in self-generated mood state (neutral to sad) on the functional connectivity of these resting-state networks (n = 24). Using independent component analysis, we identified five networks that were common to both experimental states, each showing dominant signal fluctuations in the very low frequency domain (∼0.04 Hz). Between the two states, we observed apparent increases and decreases in the overall functional connectivity of these networks. Primary findings included increased connectivity strength of a paralimbic network involving the dorsal anterior cingulate and anterior insula cortices with subjects' increasing sadness and decreased functional connectivity of the ‘default mode network’. CONCLUSIONS/SIGNIFICANCE: These findings support recent studies that suggest the functional connectivity of certain resting-state networks may, in part, reflect a dynamic image of the current brain state. In our study, this was linked to changes in subjective mood.