Cargando…
C. elegans Model Identifies Genetic Modifiers of α-Synuclein Inclusion Formation During Aging
Inclusions in the brain containing α-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation o...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265412/ https://www.ncbi.nlm.nih.gov/pubmed/18369446 http://dx.doi.org/10.1371/journal.pgen.1000027 |
Sumario: | Inclusions in the brain containing α-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of α-synuclein inclusions. In worms of old age, inclusions contain aggregated α- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in α-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between α-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other α-synuclein related disorders. |
---|