Cargando…
Stochastic Differential Equation Model for Cerebellar Granule Cell Excitability
Neurons in the brain express intrinsic dynamic behavior which is known to be stochastic in nature. A crucial question in building models of neuronal excitability is how to be able to mimic the dynamic behavior of the biological counterpart accurately and how to perform simulations in the fastest pos...
Autores principales: | Saarinen, Antti, Linne, Marja-Leena, Yli-Harja, Olli |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265481/ https://www.ncbi.nlm.nih.gov/pubmed/18463700 http://dx.doi.org/10.1371/journal.pcbi.1000004 |
Ejemplares similares
-
Numerical characterization of noisy fluctuations in two different types of stochastic differential equation models of neural signaling
por: Manninen, Tiina, et al.
Publicado: (2015) -
Computational Methods for Estimation of Cell Cycle Phase Distributions of Yeast Cells
por: Niemistö, Antti, et al.
Publicado: (2007) -
Information Diversity in Structure and Dynamics of Simulated Neuronal Networks
por: Mäki-Marttunen, Tuomo, et al.
Publicado: (2011) -
Inference of Kinetic Parameters of Delayed Stochastic Models of Gene Expression Using a Markov Chain Approximation
por: Mannerstrom, Henrik, et al.
Publicado: (2010) -
Stochastic sequence-level model of coupled transcription and translation in prokaryotes
por: Mäkelä, Jarno, et al.
Publicado: (2011)