Cargando…
Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics
Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265556/ https://www.ncbi.nlm.nih.gov/pubmed/18369420 http://dx.doi.org/10.1371/journal.pcbi.1000021 |
_version_ | 1782151494160613376 |
---|---|
author | Ramsey, Stephen A. Klemm, Sandy L. Zak, Daniel E. Kennedy, Kathleen A. Thorsson, Vesteinn Li, Bin Gilchrist, Mark Gold, Elizabeth S. Johnson, Carrie D. Litvak, Vladimir Navarro, Garnet Roach, Jared C. Rosenberger, Carrie M. Rust, Alistair G. Yudkovsky, Natalya Aderem, Alan Shmulevich, Ilya |
author_facet | Ramsey, Stephen A. Klemm, Sandy L. Zak, Daniel E. Kennedy, Kathleen A. Thorsson, Vesteinn Li, Bin Gilchrist, Mark Gold, Elizabeth S. Johnson, Carrie D. Litvak, Vladimir Navarro, Garnet Roach, Jared C. Rosenberger, Carrie M. Rust, Alistair G. Yudkovsky, Natalya Aderem, Alan Shmulevich, Ilya |
author_sort | Ramsey, Stephen A. |
collection | PubMed |
description | Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based expression profiling and transcription factor binding site motif scanning were used to infer a network of associations between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in macrophage activation. |
format | Text |
id | pubmed-2265556 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-22655562008-03-21 Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics Ramsey, Stephen A. Klemm, Sandy L. Zak, Daniel E. Kennedy, Kathleen A. Thorsson, Vesteinn Li, Bin Gilchrist, Mark Gold, Elizabeth S. Johnson, Carrie D. Litvak, Vladimir Navarro, Garnet Roach, Jared C. Rosenberger, Carrie M. Rust, Alistair G. Yudkovsky, Natalya Aderem, Alan Shmulevich, Ilya PLoS Comput Biol Research Article Macrophages are versatile immune cells that can detect a variety of pathogen-associated molecular patterns through their Toll-like receptors (TLRs). In response to microbial challenge, the TLR-stimulated macrophage undergoes an activation program controlled by a dynamically inducible transcriptional regulatory network. Mapping a complex mammalian transcriptional network poses significant challenges and requires the integration of multiple experimental data types. In this work, we inferred a transcriptional network underlying TLR-stimulated murine macrophage activation. Microarray-based expression profiling and transcription factor binding site motif scanning were used to infer a network of associations between transcription factor genes and clusters of co-expressed target genes. The time-lagged correlation was used to analyze temporal expression data in order to identify potential causal influences in the network. A novel statistical test was developed to assess the significance of the time-lagged correlation. Several associations in the resulting inferred network were validated using targeted ChIP-on-chip experiments. The network incorporates known regulators and gives insight into the transcriptional control of macrophage activation. Our analysis identified a novel regulator (TGIF1) that may have a role in macrophage activation. Public Library of Science 2008-03-21 /pmc/articles/PMC2265556/ /pubmed/18369420 http://dx.doi.org/10.1371/journal.pcbi.1000021 Text en Ramsey et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ramsey, Stephen A. Klemm, Sandy L. Zak, Daniel E. Kennedy, Kathleen A. Thorsson, Vesteinn Li, Bin Gilchrist, Mark Gold, Elizabeth S. Johnson, Carrie D. Litvak, Vladimir Navarro, Garnet Roach, Jared C. Rosenberger, Carrie M. Rust, Alistair G. Yudkovsky, Natalya Aderem, Alan Shmulevich, Ilya Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics |
title | Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics |
title_full | Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics |
title_fullStr | Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics |
title_full_unstemmed | Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics |
title_short | Uncovering a Macrophage Transcriptional Program by Integrating Evidence from Motif Scanning and Expression Dynamics |
title_sort | uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265556/ https://www.ncbi.nlm.nih.gov/pubmed/18369420 http://dx.doi.org/10.1371/journal.pcbi.1000021 |
work_keys_str_mv | AT ramseystephena uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT klemmsandyl uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT zakdaniele uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT kennedykathleena uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT thorssonvesteinn uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT libin uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT gilchristmark uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT goldelizabeths uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT johnsoncarried uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT litvakvladimir uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT navarrogarnet uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT roachjaredc uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT rosenbergercarriem uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT rustalistairg uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT yudkovskynatalya uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT aderemalan uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics AT shmulevichilya uncoveringamacrophagetranscriptionalprogrambyintegratingevidencefrommotifscanningandexpressiondynamics |