Cargando…
The JAK/STAT pathway positively regulates DPP signaling in the Drosophila germline stem cell niche
The stem cell niche, formed by surrounding stromal cells, provides extrinsic signals that maintain stem cell self-renewal. However, it remains unclear how these extrinsic signals are regulated. In the Drosophila female germline stem cell (GSC) niche, Decapentaplegic (DPP) is an important niche facto...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265565/ https://www.ncbi.nlm.nih.gov/pubmed/18283115 http://dx.doi.org/10.1083/jcb.200711022 |
Sumario: | The stem cell niche, formed by surrounding stromal cells, provides extrinsic signals that maintain stem cell self-renewal. However, it remains unclear how these extrinsic signals are regulated. In the Drosophila female germline stem cell (GSC) niche, Decapentaplegic (DPP) is an important niche factor for GSC self-renewal. The exact source of the DPP and how its transcription is regulated in this niche remain unclear. We show that dpp is expressed in somatic cells of the niche including the cap cells, a subtype of niche cells. Furthermore, our data show that the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway positively regulates dpp expression in the cap cells, suggesting that JAK/STAT activity is required in somatic niche cells to prevent precocious GSC differentiation. Our data suggest that the JAK/STAT pathway functions downstream/independently of cap cell formation induced by Notch signaling. JAK/STAT signaling may also regulate dpp expression in the male GSC niche, suggesting a common origin of female and male GSC niches. |
---|