Cargando…

Diacylglycerol kinase ζ inhibits myocardial atrophy and restores cardiac dysfunction in streptozotocin-induced diabetes mellitus

BACKGROUND: Activation of the diacylglycerol (DAG)-protein kinase C (PKC) pathway has been implicated in the pathogenesis of a number of diabetic complications. Diacylglycerol kinase (DGK) converts DAG to phosphatidic acid and acts as an endogenous regulator of PKC activity. Akt/PKB is associated wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bilim, Olga, Takeishi, Yasuchika, Kitahara, Tatsuro, Arimoto, Takanori, Niizeki, Takeshi, Sasaki, Toshiki, Goto, Kaoru, Kubota, Isao
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265681/
https://www.ncbi.nlm.nih.gov/pubmed/18241357
http://dx.doi.org/10.1186/1475-2840-7-2
Descripción
Sumario:BACKGROUND: Activation of the diacylglycerol (DAG)-protein kinase C (PKC) pathway has been implicated in the pathogenesis of a number of diabetic complications. Diacylglycerol kinase (DGK) converts DAG to phosphatidic acid and acts as an endogenous regulator of PKC activity. Akt/PKB is associated with a downstream insulin signaling, and PKCβ attenuates insulin-stimulated Akt phosphorylation. METHODS AND RESULTS: We examined transgenic mice with cardiac-specific overexpression of DGKζ (DGKζ-TG) compared to wild type (WT) mice in streptozotocin-induced (STZ, 150 mg/kg) diabetic and nondiabetic conditions. After 8 weeks, decreases in heart weight and heart weight/body weight ratio in diabetic WT mice were inhibited in DGKζ-TG mice. Echocardiography at 8 weeks after STZ-injection demonstrated that decreases in left ventricular end-diastolic diameter and fractional shortening observed in WT mice were attenuated in DGKζ-TG mice. Thinning of the interventricular septum and the posterior wall in diabetic WT hearts were blocked in DGKζ-TG mice. Reduction of transverse diameter of cardiomyocytes isolated from the left ventricle in diabetic WT mice was attenuated in DGKζ-TG mice. Cardiac fibrosis was much less in diabetic DGKζ-TG than in diabetic WT mice. Western blots showed translocation of PKCβ and δ isoforms to membrane fraction and decreased Akt/PKB phosphorylation in diabetic WT mouse hearts. However in diabetic DGKζ-TG mice, neither translocation of PKC nor changes Akt/PKB phosphorylation was observed. CONCLUSION: DGKζ modulates intracellular signaling and improves the course of diabetic cardiomyopathy. These data may suggest that DGKζ is a new therapeutic target to prevent or reverse diabetic cardiomyopathy.