Cargando…
Emerging roles of the SUMO pathway in mitosis
SUMO proteins are small ubiquitin-like modifiers found in all eukaryotes that become covalently conjugated to other cellular proteins. The SUMO conjugation pathway is biochemically similar to ubiquitin conjugation, although the enzymes within the pathway act exclusively on SUMO proteins. This post-t...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2265688/ https://www.ncbi.nlm.nih.gov/pubmed/18218095 http://dx.doi.org/10.1186/1747-1028-3-5 |
Sumario: | SUMO proteins are small ubiquitin-like modifiers found in all eukaryotes that become covalently conjugated to other cellular proteins. The SUMO conjugation pathway is biochemically similar to ubiquitin conjugation, although the enzymes within the pathway act exclusively on SUMO proteins. This post-translational modification controls many processes. Here, I will focus on evidence that SUMOylation plays a critical role(s) in mitosis: Early studies showed a genetic requirement for SUMO pathway components in the process of cell division, while later findings implicated SUMOylation in the control of mitotic chromosome structure, cell cycle progression, kinetochore function and cytokinesis. Recent insights into the targets of SUMOylation are likely to be extremely helpful in understanding each of these aspects. Finally, growing evidence suggests that SUMOylation is a downstream target of regulation through Ran, a small GTPase with important functions in both interphase nuclear trafficking and mitotic spindle assembly. |
---|