Cargando…

Generation of Functional Fluorescent BK Channels by Random Insertion of GFP Variants

The yellow and cyan variants of green fluorescent protein (GFP) constitute an excellent pair for fluorescence resonance energy transfer (FRET) and can be used to study conformational rearrangements of proteins. Our aim was to develop a library of fluorescent large conductance voltage- and Ca(2+)-gat...

Descripción completa

Detalles Bibliográficos
Autores principales: Giraldez, Teresa, Hughes, Thomas E., Sigworth, Fred J.
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2005
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266602/
https://www.ncbi.nlm.nih.gov/pubmed/16260837
http://dx.doi.org/10.1085/jgp.200509368
Descripción
Sumario:The yellow and cyan variants of green fluorescent protein (GFP) constitute an excellent pair for fluorescence resonance energy transfer (FRET) and can be used to study conformational rearrangements of proteins. Our aim was to develop a library of fluorescent large conductance voltage- and Ca(2+)-gated channels (BK or slo channels) for future use in FRET studies. We report the results of a random insertion of YFP and CFP into multiple sites of the α subunit of the hslo channel using a Tn5 transposon-based technique. 55 unique fluorescent fusion proteins were obtained and tested for cell surface expression and channel function. 19 constructs are expressed at the plasma membrane and show voltage and Ca(2+)-dependent currents. In 16 of them the voltage and Ca(2+) dependence is very similar to the wild-type channel. Two insertions in the Ca(2+) bowl and one in the RCK2 domain showed a strong shift in the G-V curve. The remaining 36 constructs were retained intracellularly; a solubility assay suggests that these proteins are not forming intracellular aggregates. The “success rate” of 19 out of 55 hslo insertion constructs compares very favorably with other studies of random GFP fusions.