Cargando…
A dynamic Bayesian network approach to protein secondary structure prediction
BACKGROUND: Protein secondary structure prediction method based on probabilistic models such as hidden Markov model (HMM) appeals to many because it provides meaningful information relevant to sequence-structure relationship. However, at present, the prediction accuracy of pure HMM-type methods is m...
Autores principales: | Yao, Xin-Qiu, Zhu, Huaiqiu, She, Zhen-Su |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266706/ https://www.ncbi.nlm.nih.gov/pubmed/18218144 http://dx.doi.org/10.1186/1471-2105-9-49 |
Ejemplares similares
-
Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure
por: Aydin, Zafer, et al.
Publicado: (2011) -
Bayesian Model of Protein Primary Sequence for Secondary Structure Prediction
por: Li, Qiwei, et al.
Publicado: (2014) -
MED: a new non-supervised gene prediction algorithm for bacterial and archaeal genomes
por: Zhu, Huaiqiu, et al.
Publicado: (2007) -
Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes
por: Zheng, Xiaobin, et al.
Publicado: (2011) -
Prediction of protein structural classes for low-homology sequences based on predicted secondary structure
por: Yang, Jian-Yi, et al.
Publicado: (2010)