Cargando…
Cullin-RING ubiquitin ligases: global regulation and activation cycles
Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266742/ https://www.ncbi.nlm.nih.gov/pubmed/18282298 http://dx.doi.org/10.1186/1747-1028-3-7 |
_version_ | 1782151552008454144 |
---|---|
author | Bosu, Dimple R Kipreos, Edward T |
author_facet | Bosu, Dimple R Kipreos, Edward T |
author_sort | Bosu, Dimple R |
collection | PubMed |
description | Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed of a cullin, RING H2 finger protein, a variable substrate-recognition subunit (SRS), and for most CRLs, an adaptor that links the SRS to the complex. Eukaryotic species contain multiple cullins, with five major types in metazoa. Each cullin forms a distinct class of CRL complex, with distinct adaptors and/or substrate-recognition subunits. Despite this diversity, each of the classes of CRL complexes is subject to similar regulatory mechanisms. This review focuses on the global regulation of CRL complexes, encompassing: neddylation, deneddylation by the COP9 Signalosome (CSN), inhibitory binding by CAND1, and the dimerization of CRL complexes. We also address the role of cycles of activation and inactivation in regulating CRL activity and switching between substrate-recognition subunits. |
format | Text |
id | pubmed-2266742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22667422008-03-11 Cullin-RING ubiquitin ligases: global regulation and activation cycles Bosu, Dimple R Kipreos, Edward T Cell Div Review Cullin-RING ubiquitin ligases (CRLs) comprise the largest known category of ubiquitin ligases. CRLs regulate an extensive number of dynamic cellular processes, including multiple aspects of the cell cycle, transcription, signal transduction, and development. CRLs are multisubunit complexes composed of a cullin, RING H2 finger protein, a variable substrate-recognition subunit (SRS), and for most CRLs, an adaptor that links the SRS to the complex. Eukaryotic species contain multiple cullins, with five major types in metazoa. Each cullin forms a distinct class of CRL complex, with distinct adaptors and/or substrate-recognition subunits. Despite this diversity, each of the classes of CRL complexes is subject to similar regulatory mechanisms. This review focuses on the global regulation of CRL complexes, encompassing: neddylation, deneddylation by the COP9 Signalosome (CSN), inhibitory binding by CAND1, and the dimerization of CRL complexes. We also address the role of cycles of activation and inactivation in regulating CRL activity and switching between substrate-recognition subunits. BioMed Central 2008-02-18 /pmc/articles/PMC2266742/ /pubmed/18282298 http://dx.doi.org/10.1186/1747-1028-3-7 Text en Copyright © 2008 Bosu and Kipreos; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Bosu, Dimple R Kipreos, Edward T Cullin-RING ubiquitin ligases: global regulation and activation cycles |
title | Cullin-RING ubiquitin ligases: global regulation and activation cycles |
title_full | Cullin-RING ubiquitin ligases: global regulation and activation cycles |
title_fullStr | Cullin-RING ubiquitin ligases: global regulation and activation cycles |
title_full_unstemmed | Cullin-RING ubiquitin ligases: global regulation and activation cycles |
title_short | Cullin-RING ubiquitin ligases: global regulation and activation cycles |
title_sort | cullin-ring ubiquitin ligases: global regulation and activation cycles |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266742/ https://www.ncbi.nlm.nih.gov/pubmed/18282298 http://dx.doi.org/10.1186/1747-1028-3-7 |
work_keys_str_mv | AT bosudimpler cullinringubiquitinligasesglobalregulationandactivationcycles AT kipreosedwardt cullinringubiquitinligasesglobalregulationandactivationcycles |