Cargando…
Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway
BACKGROUND: Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly di...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266802/ https://www.ncbi.nlm.nih.gov/pubmed/18365011 http://dx.doi.org/10.1371/journal.pone.0001856 |
_version_ | 1782151565275037696 |
---|---|
author | Wang, Bin Xiao, Zhifeng Chen, Bing Han, Jin Gao, Yuan Zhang, Jing Zhao, Wenxue Wang, Xia Dai, Jianwu |
author_facet | Wang, Bin Xiao, Zhifeng Chen, Bing Han, Jin Gao, Yuan Zhang, Jing Zhao, Wenxue Wang, Xia Dai, Jianwu |
author_sort | Wang, Bin |
collection | PubMed |
description | BACKGROUND: Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spinal cord injury. However, little is known about the mechanism of such fate decision of NPCs. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have found that myelin protein and Nogo-66 promoted the differentiation of NPCs into glial lineage. NgR and mTOR-Stat3 pathway were involved in this process. Releasing NgR from cell membranes or blocking mTOR-STAT3 could rescue the enhanced glial differentiation by Nogo-66. CONCLUSIONS/SIGNIFICANCE: These results revealed a novel function of Nogo-66 in the fate decision of NPCs. This discovery could have profound impact on the understanding of CNS development and could improve the therapy of CNS injuries. |
format | Text |
id | pubmed-2266802 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-22668022008-03-26 Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway Wang, Bin Xiao, Zhifeng Chen, Bing Han, Jin Gao, Yuan Zhang, Jing Zhao, Wenxue Wang, Xia Dai, Jianwu PLoS One Research Article BACKGROUND: Neural stem/progenitor cells (NPCs) can differentiate into neurons, astrocytes and oligodendrocytes. NPCs are considered valuable for the cell therapy of injuries in the central nervous system (CNS). However, when NPCs are transplanted into the adult mammalian spinal cord, they mostly differentiate into glial lineage. The same results have been observed for endogenous NPCs during spinal cord injury. However, little is known about the mechanism of such fate decision of NPCs. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we have found that myelin protein and Nogo-66 promoted the differentiation of NPCs into glial lineage. NgR and mTOR-Stat3 pathway were involved in this process. Releasing NgR from cell membranes or blocking mTOR-STAT3 could rescue the enhanced glial differentiation by Nogo-66. CONCLUSIONS/SIGNIFICANCE: These results revealed a novel function of Nogo-66 in the fate decision of NPCs. This discovery could have profound impact on the understanding of CNS development and could improve the therapy of CNS injuries. Public Library of Science 2008-03-26 /pmc/articles/PMC2266802/ /pubmed/18365011 http://dx.doi.org/10.1371/journal.pone.0001856 Text en Wang et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Bin Xiao, Zhifeng Chen, Bing Han, Jin Gao, Yuan Zhang, Jing Zhao, Wenxue Wang, Xia Dai, Jianwu Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway |
title | Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway |
title_full | Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway |
title_fullStr | Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway |
title_full_unstemmed | Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway |
title_short | Nogo-66 Promotes the Differentiation of Neural Progenitors into Astroglial Lineage Cells through mTOR-STAT3 Pathway |
title_sort | nogo-66 promotes the differentiation of neural progenitors into astroglial lineage cells through mtor-stat3 pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266802/ https://www.ncbi.nlm.nih.gov/pubmed/18365011 http://dx.doi.org/10.1371/journal.pone.0001856 |
work_keys_str_mv | AT wangbin nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT xiaozhifeng nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT chenbing nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT hanjin nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT gaoyuan nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT zhangjing nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT zhaowenxue nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT wangxia nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway AT daijianwu nogo66promotesthedifferentiationofneuralprogenitorsintoastrogliallineagecellsthroughmtorstat3pathway |