Cargando…

Hyperthermic treatment of DMBA-induced rat mammary cancer using magnetic nanoparticles

BACKGROUND: We have developed magnetite cationic liposomes (MCLs) and applied them as a mediator of local hyperthermia. MCLs can generate heat under an alternating magnetic field (AMF). In this study, the in vivo effect of hyperthermia mediated by MCLs was examined using 7,12-dimethylbenz(a)anthrace...

Descripción completa

Detalles Bibliográficos
Autores principales: Motoyama, Jun, Yamashita, Noriyuki, Morino, Tomio, Tanaka, Masashi, Kobayashi, Takeshi, Honda, Hiroyuki
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266920/
https://www.ncbi.nlm.nih.gov/pubmed/18298831
http://dx.doi.org/10.1186/1477-044X-6-2
Descripción
Sumario:BACKGROUND: We have developed magnetite cationic liposomes (MCLs) and applied them as a mediator of local hyperthermia. MCLs can generate heat under an alternating magnetic field (AMF). In this study, the in vivo effect of hyperthermia mediated by MCLs was examined using 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary cancer as a spontaneous cancer model. METHOD: MCLs were injected into the mammary cancer and then subjected to an AMF. RESULTS: Four rats in 20 developed mammary tumors at more than 1 site in the body. The first-developed tumor in each of these 4 rats was selected and heated to over 43°C following administration of MCLs by an infusion pump. After a series of 3 hyperthermia treatments, treated tumors in 3 of the 4 rats were well controlled over a 30-day observation period. One of the 4 rats exhibited regrowth after 2 weeks. In this rat, there were 3 sites of tumor regrowth. Two of these regrowths were reduced in volume and regressed completely after 31 days, although the remaining one grew rapidly. These results indicated hyperthermia-induced immunological antitumor activity mediated by the MCLs. CONCLUSION: Our results suggest that hyperthermic treatment using MCLs is effective in a spontaneous cancer model.