Cargando…
Classifying EEG for Brain-Computer Interface: Learning Optimal Filters for Dynamical System Features
Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical syst...
Autores principales: | Song, Le, Epps, Julien |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2266978/ https://www.ncbi.nlm.nih.gov/pubmed/18364986 http://dx.doi.org/10.1155/2007/57180 |
Ejemplares similares
-
Temporal and Spatial Features of Single-Trial EEG for Brain-Computer Interface
por: Zhao, Qibin, et al.
Publicado: (2007) -
Evolutionary optimization of classifiers and features for single-trial EEG Discrimination
por: Åberg, Malin CB, et al.
Publicado: (2007) -
Separable EEG Features Induced by Timing Prediction for Active Brain-Computer Interfaces
por: Meng, Jiayuan, et al.
Publicado: (2020) -
EEG Feature Extraction Using Evolutionary Algorithms for Brain-Computer Interface Development
por: Rocha-Herrera, César Alfredo, et al.
Publicado: (2022) -
Status of deep learning for EEG-based brain–computer interface applications
por: Hossain, Khondoker Murad, et al.
Publicado: (2023)