Cargando…
Isoform switching facilitates period control in the Neurospora crassa circadian clock
A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given...
Autores principales: | , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267733/ https://www.ncbi.nlm.nih.gov/pubmed/18277380 http://dx.doi.org/10.1038/msb.2008.5 |
_version_ | 1782151652019535872 |
---|---|
author | Akman, Ozgur E Locke, James C W Tang, Sanyi Carré, Isabelle Millar, Andrew J Rand, David A |
author_facet | Akman, Ozgur E Locke, James C W Tang, Sanyi Carré, Isabelle Millar, Andrew J Rand, David A |
author_sort | Akman, Ozgur E |
collection | PubMed |
description | A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic. |
format | Text |
id | pubmed-2267733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-22677332008-04-08 Isoform switching facilitates period control in the Neurospora crassa circadian clock Akman, Ozgur E Locke, James C W Tang, Sanyi Carré, Isabelle Millar, Andrew J Rand, David A Mol Syst Biol Article A striking and defining feature of circadian clocks is the small variation in period over a physiological range of temperatures. This is referred to as temperature compensation, although recent work has suggested that the variation observed is a specific, adaptive control of period. Moreover, given that many biological rate constants have a Q(10) of around 2, it is remarkable that such clocks remain rhythmic under significant temperature changes. We introduce a new mathematical model for the Neurospora crassa circadian network incorporating experimental work showing that temperature alters the balance of translation between a short and long form of the FREQUENCY (FRQ) protein. This is used to discuss period control and functionality for the Neurospora system. The model reproduces a broad range of key experimental data on temperature dependence and rhythmicity, both in wild-type and mutant strains. We present a simple mechanism utilising the presence of the FRQ isoforms (isoform switching) by which period control could have evolved, and argue that this regulatory structure may also increase the temperature range where the clock is robustly rhythmic. Nature Publishing Group 2008-02-12 /pmc/articles/PMC2267733/ /pubmed/18277380 http://dx.doi.org/10.1038/msb.2008.5 Text en Copyright © 2008, EMBO and Nature Publishing Group http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits distribution and reproduction in any medium, provided the original author and source are credited. Creation of derivative works is permitted but the resulting work may be distributed only under the same or similar licence to this one. This licence does not permit commercial exploitation without specific permission. |
spellingShingle | Article Akman, Ozgur E Locke, James C W Tang, Sanyi Carré, Isabelle Millar, Andrew J Rand, David A Isoform switching facilitates period control in the Neurospora crassa circadian clock |
title | Isoform switching facilitates period control in the Neurospora crassa circadian clock |
title_full | Isoform switching facilitates period control in the Neurospora crassa circadian clock |
title_fullStr | Isoform switching facilitates period control in the Neurospora crassa circadian clock |
title_full_unstemmed | Isoform switching facilitates period control in the Neurospora crassa circadian clock |
title_short | Isoform switching facilitates period control in the Neurospora crassa circadian clock |
title_sort | isoform switching facilitates period control in the neurospora crassa circadian clock |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267733/ https://www.ncbi.nlm.nih.gov/pubmed/18277380 http://dx.doi.org/10.1038/msb.2008.5 |
work_keys_str_mv | AT akmanozgure isoformswitchingfacilitatesperiodcontrolintheneurosporacrassacircadianclock AT lockejamescw isoformswitchingfacilitatesperiodcontrolintheneurosporacrassacircadianclock AT tangsanyi isoformswitchingfacilitatesperiodcontrolintheneurosporacrassacircadianclock AT carreisabelle isoformswitchingfacilitatesperiodcontrolintheneurosporacrassacircadianclock AT millarandrewj isoformswitchingfacilitatesperiodcontrolintheneurosporacrassacircadianclock AT randdavida isoformswitchingfacilitatesperiodcontrolintheneurosporacrassacircadianclock |