Cargando…
Impact of the solvent capacity constraint on E. coli metabolism
BACKGROUND: Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it lim...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270259/ https://www.ncbi.nlm.nih.gov/pubmed/18215292 http://dx.doi.org/10.1186/1752-0509-2-7 |
_version_ | 1782151719476527104 |
---|---|
author | Vazquez, Alexei Beg, Qasim K deMenezes, Marcio A Ernst, Jason Bar-Joseph, Ziv Barabási, Albert-László Boros, László G Oltvai, Zoltán N |
author_facet | Vazquez, Alexei Beg, Qasim K deMenezes, Marcio A Ernst, Jason Bar-Joseph, Ziv Barabási, Albert-László Boros, László G Oltvai, Zoltán N |
author_sort | Vazquez, Alexei |
collection | PubMed |
description | BACKGROUND: Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it limits the solvent capacity available to metabolic enzymes. RESULTS: Using a recently introduced flux balance modeling framework (FBAwMC) here we demonstrate that this constraint determines a metabolic switch in E. coli cells when they are shifted from low to high growth rates. The switch is characterized by a change in effective optimization strategy, the excretion of acetate at high growth rates, and a global reorganization of E. coli metabolic fluxes, the latter being partially confirmed by flux measurements of central metabolic reactions. CONCLUSION: These results implicate the solvent capacity as an important physiological constraint acting on E. coli cells operating at high metabolic rates and for the activation of a metabolic switch when they are shifted from low to high growth rates. The relevance of this constraint in the context of both the aerobic ethanol excretion seen in fast growing yeast cells (Crabtree effect) and the aerobic glycolysis observed in rapidly dividing cancer cells (Warburg effect) should be addressed in the future. |
format | Text |
id | pubmed-2270259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22702592008-03-20 Impact of the solvent capacity constraint on E. coli metabolism Vazquez, Alexei Beg, Qasim K deMenezes, Marcio A Ernst, Jason Bar-Joseph, Ziv Barabási, Albert-László Boros, László G Oltvai, Zoltán N BMC Syst Biol Research Article BACKGROUND: Obtaining quantitative predictions for cellular metabolic activities requires the identification and modeling of the physicochemical constraints that are relevant at physiological growth conditions. Molecular crowding in a cell's cytoplasm is one such potential constraint, as it limits the solvent capacity available to metabolic enzymes. RESULTS: Using a recently introduced flux balance modeling framework (FBAwMC) here we demonstrate that this constraint determines a metabolic switch in E. coli cells when they are shifted from low to high growth rates. The switch is characterized by a change in effective optimization strategy, the excretion of acetate at high growth rates, and a global reorganization of E. coli metabolic fluxes, the latter being partially confirmed by flux measurements of central metabolic reactions. CONCLUSION: These results implicate the solvent capacity as an important physiological constraint acting on E. coli cells operating at high metabolic rates and for the activation of a metabolic switch when they are shifted from low to high growth rates. The relevance of this constraint in the context of both the aerobic ethanol excretion seen in fast growing yeast cells (Crabtree effect) and the aerobic glycolysis observed in rapidly dividing cancer cells (Warburg effect) should be addressed in the future. BioMed Central 2008-01-23 /pmc/articles/PMC2270259/ /pubmed/18215292 http://dx.doi.org/10.1186/1752-0509-2-7 Text en Copyright © 2008 Vazquez et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Vazquez, Alexei Beg, Qasim K deMenezes, Marcio A Ernst, Jason Bar-Joseph, Ziv Barabási, Albert-László Boros, László G Oltvai, Zoltán N Impact of the solvent capacity constraint on E. coli metabolism |
title | Impact of the solvent capacity constraint on E. coli metabolism |
title_full | Impact of the solvent capacity constraint on E. coli metabolism |
title_fullStr | Impact of the solvent capacity constraint on E. coli metabolism |
title_full_unstemmed | Impact of the solvent capacity constraint on E. coli metabolism |
title_short | Impact of the solvent capacity constraint on E. coli metabolism |
title_sort | impact of the solvent capacity constraint on e. coli metabolism |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2270259/ https://www.ncbi.nlm.nih.gov/pubmed/18215292 http://dx.doi.org/10.1186/1752-0509-2-7 |
work_keys_str_mv | AT vazquezalexei impactofthesolventcapacityconstraintonecolimetabolism AT begqasimk impactofthesolventcapacityconstraintonecolimetabolism AT demenezesmarcioa impactofthesolventcapacityconstraintonecolimetabolism AT ernstjason impactofthesolventcapacityconstraintonecolimetabolism AT barjosephziv impactofthesolventcapacityconstraintonecolimetabolism AT barabasialbertlaszlo impactofthesolventcapacityconstraintonecolimetabolism AT boroslaszlog impactofthesolventcapacityconstraintonecolimetabolism AT oltvaizoltann impactofthesolventcapacityconstraintonecolimetabolism |