Cargando…
The Evolution of Robust Development and Homeostasis in Artificial Organisms
During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems f...
Autores principales: | , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274883/ https://www.ncbi.nlm.nih.gov/pubmed/18369424 http://dx.doi.org/10.1371/journal.pcbi.1000030 |
_version_ | 1782151802933739520 |
---|---|
author | Basanta, David Miodownik, Mark Baum, Buzz |
author_facet | Basanta, David Miodownik, Mark Baum, Buzz |
author_sort | Basanta, David |
collection | PubMed |
description | During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selection. |
format | Text |
id | pubmed-2274883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-22748832008-03-28 The Evolution of Robust Development and Homeostasis in Artificial Organisms Basanta, David Miodownik, Mark Baum, Buzz PLoS Comput Biol Research Article During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selection. Public Library of Science 2008-03-28 /pmc/articles/PMC2274883/ /pubmed/18369424 http://dx.doi.org/10.1371/journal.pcbi.1000030 Text en Basanta et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Basanta, David Miodownik, Mark Baum, Buzz The Evolution of Robust Development and Homeostasis in Artificial Organisms |
title | The Evolution of Robust Development and Homeostasis in Artificial Organisms |
title_full | The Evolution of Robust Development and Homeostasis in Artificial Organisms |
title_fullStr | The Evolution of Robust Development and Homeostasis in Artificial Organisms |
title_full_unstemmed | The Evolution of Robust Development and Homeostasis in Artificial Organisms |
title_short | The Evolution of Robust Development and Homeostasis in Artificial Organisms |
title_sort | evolution of robust development and homeostasis in artificial organisms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2274883/ https://www.ncbi.nlm.nih.gov/pubmed/18369424 http://dx.doi.org/10.1371/journal.pcbi.1000030 |
work_keys_str_mv | AT basantadavid theevolutionofrobustdevelopmentandhomeostasisinartificialorganisms AT miodownikmark theevolutionofrobustdevelopmentandhomeostasisinartificialorganisms AT baumbuzz theevolutionofrobustdevelopmentandhomeostasisinartificialorganisms AT basantadavid evolutionofrobustdevelopmentandhomeostasisinartificialorganisms AT miodownikmark evolutionofrobustdevelopmentandhomeostasisinartificialorganisms AT baumbuzz evolutionofrobustdevelopmentandhomeostasisinartificialorganisms |