Cargando…

Identification of a Calcitriol-Regulated Sp-1 Site in the Promoter of Human CD14 using a Combined Western Blotting Electrophoresis Mobility Shift Assay (WEMSA)

Calcitriol (1α, 25-dihydroxyvitamin D(3)) induces the expression of CD14 in mononuclear phagocytes. The mechanisms accounting for this have been unclear since the promoter of CD14 does not contain a canonical vitamin D response element (VDRE). Calcitriol has been shown to regulate the activity of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Moeenrezakhanlou, Alireza, Nandan, Devki, Reiner, Neil E.
Formato: Texto
Lenguaje:English
Publicado: Biological Procedures Online 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275043/
https://www.ncbi.nlm.nih.gov/pubmed/18385805
http://dx.doi.org/10.1251/bpo140
Descripción
Sumario:Calcitriol (1α, 25-dihydroxyvitamin D(3)) induces the expression of CD14 in mononuclear phagocytes. The mechanisms accounting for this have been unclear since the promoter of CD14 does not contain a canonical vitamin D response element (VDRE). Calcitriol has been shown to regulate the activity of the transcription factor Sp-1 and our analysis of the proximal promoter of CD14 indicated the presence of four Sp-1-like binding sequences. To identify which of these sites might be involved in the response to calcitriol, we used a system incorporating an electrophoretic mobility shift assay (EMSA) coupled to Western blot analysis (WEMSA). Using WEMSA, we found that only one of the Sp-1-like binding sequences, located at position -91 to -79 (relative to the transcription start site), bound the transcription factor Sp1. Sp-1 binding to this site was demonstrable using nuclear extracts from control cells. Notably, binding activity was attenuated in nuclear extracts prepared from cells that had been incubated with calcitriol, thus suggesting Sp-1 involvement in calcitriol induction of CD14 expression. Notably, these results show that like EMSA, WEMSA can be broadly applied to aid in the identification of transcription factors involved in regulating gene expression. WEMSA, however, offers a number of distinct advantages when compared with conventional EMSA. Antibodies used for WEMSA often provide less ambiguous signals than those used in EMSA, and these do not have to recognize epitopes under native conditions. In addition, WEMSA does not require the use of labeled oligos, thus eliminating a significant expense associated with EMSA.