Cargando…
Neural Systems with Numerically Matched Input-Output Statistic: Isotonic Bivariate Statistical Modeling
Bivariate statistical modeling from incomplete data is a useful statistical tool that allows to discover the model underlying two data sets when the data in the two sets do not correspond in size nor in ordering. Such situation may occur when the sizes of the two data sets do not match (i.e., there...
Autor principal: | Fiori, Simone |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275048/ https://www.ncbi.nlm.nih.gov/pubmed/18566641 http://dx.doi.org/10.1155/2007/71859 |
Ejemplares similares
-
Offloading operation bivariate extreme response statistics for FPSO vessel
por: Gaidai, Oleg, et al.
Publicado: (2023) -
Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models
por: Jaafarzadeh, Maryam Sadat, et al.
Publicado: (2021) -
Bivariate microarray analysis: statistical interpretation of two-channel functional genomics data
por: Hsiao, Albert, et al.
Publicado: (2009) -
GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India
por: Das, Jayanta, et al.
Publicado: (2023) -
Tool Embodiment: The Tool’s Output Must Match the User’s Input
por: Weser, Veronica, et al.
Publicado: (2019)