Cargando…
Gene function prediction using labeled and unlabeled data
BACKGROUND: In general, gene function prediction can be formalized as a classification problem based on machine learning technique. Usually, both labeled positive and negative samples are needed to train the classifier. For the problem of gene function prediction, however, the available information...
Autores principales: | Zhao, Xing-Ming, Wang, Yong, Chen, Luonan, Aihara, Kazuyuki |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275242/ https://www.ncbi.nlm.nih.gov/pubmed/18221567 http://dx.doi.org/10.1186/1471-2105-9-57 |
Ejemplares similares
-
Predicting gene function using few positive examples and unlabeled ones
por: Chen, Yiming, et al.
Publicado: (2010) -
Uncovering signal transduction networks from high-throughput data by integer linear programming
por: Zhao, Xing-Ming, et al.
Publicado: (2008) -
Improving Chemical Reaction Prediction with Unlabeled Data
por: Xie, Yu, et al.
Publicado: (2022) -
Discriminatory Target Learning: Mining Significant Dependence Relationships from Labeled and Unlabeled Data
por: Duan, Zhi-Yi, et al.
Publicado: (2019) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016)