Cargando…

Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients

BACKGROUND: The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting au...

Descripción completa

Detalles Bibliográficos
Autores principales: Cressey, Ratchada, Pimpa, Saranya, Chewaskulyong, Busyamas, Lertprasertsuke, Nirush, Saeteng, Somchareon, Tayapiwatana, Chatchai, Kasinrerk, Watchara
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275332/
https://www.ncbi.nlm.nih.gov/pubmed/18284706
http://dx.doi.org/10.1186/1472-6750-8-16
_version_ 1782151857695621120
author Cressey, Ratchada
Pimpa, Saranya
Chewaskulyong, Busyamas
Lertprasertsuke, Nirush
Saeteng, Somchareon
Tayapiwatana, Chatchai
Kasinrerk, Watchara
author_facet Cressey, Ratchada
Pimpa, Saranya
Chewaskulyong, Busyamas
Lertprasertsuke, Nirush
Saeteng, Somchareon
Tayapiwatana, Chatchai
Kasinrerk, Watchara
author_sort Cressey, Ratchada
collection PubMed
description BACKGROUND: The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting autoantibodies, which involves coating the microtiter plate with the tumor associated antigen (TAA) of interest and allowing serum antibodies to bind. The patient's sample is directly in contact with the coating antigen so the protein used for coating must be pure to avoid non-specific binding. In this study, a simplified method to selectively and specifically immobilize TAAs onto microtiter plates in order to detect circulating autoantibodies in cancer patients without prior purification process was described. Wild type full-length p53 protein was produced in fusion with biotin carboxyl carrier peptide (BCCP) or hexahistidine [(His)6] using pAK400 and pET15b(+) vectors, respectively. The recombinant p53 fusion protein produced was then subjected to react with either a commercial p53 monoclonal antibody (mAb) or sera from lung cancer patients and healthy volunteers in an enzyme-linked immunosorbent assay (ELISA) format. RESULTS: Both of the immobilized p53 fusion proteins as well as the purified (His)6-p53 fusion protein had a similar dose response of detection to a commercial p53 mAb (DO7). When the biotinylated p53-BCCP fusion protein was used as an antigen to detect p53 autoantibodies in clinical samples, the result showed that human serum reacted strongly to avidin-coated microwell even in the absence of the biotinylated p53-BCCP fusion protein, thus compromised its ability to differentiate weakly positive sera from those that were negative. In contrast, the (His)6-p53 protein immobilized directly onto Ni+ coated microplate was able to identify the p53 autoantibody positive serum. In addition, its reactivity to clinical serum samples highly correlated with those obtained from using purified p53 as an antigen (R = 0.9803, p < 0.0001). Moreover, this directly immobilized p53 antigen can clearly differentiate p53 autoantibody positive sera in cancer patients from healthy volunteers' sera. CONCLUSION: A method of coating directly and specifically TAAs onto a microtiter plate without the purification processes was developed in this study. Although in this study only one tumor antigen was examined, the simplicity and the ability of coated antigens to identify p53 specific autoantibodies in serum accurately might enable a larger panel of TAAs specific autoantibodies to be explored as serological markers for cancer.
format Text
id pubmed-2275332
institution National Center for Biotechnology Information
language English
publishDate 2008
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-22753322008-03-27 Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients Cressey, Ratchada Pimpa, Saranya Chewaskulyong, Busyamas Lertprasertsuke, Nirush Saeteng, Somchareon Tayapiwatana, Chatchai Kasinrerk, Watchara BMC Biotechnol Research Article BACKGROUND: The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting autoantibodies, which involves coating the microtiter plate with the tumor associated antigen (TAA) of interest and allowing serum antibodies to bind. The patient's sample is directly in contact with the coating antigen so the protein used for coating must be pure to avoid non-specific binding. In this study, a simplified method to selectively and specifically immobilize TAAs onto microtiter plates in order to detect circulating autoantibodies in cancer patients without prior purification process was described. Wild type full-length p53 protein was produced in fusion with biotin carboxyl carrier peptide (BCCP) or hexahistidine [(His)6] using pAK400 and pET15b(+) vectors, respectively. The recombinant p53 fusion protein produced was then subjected to react with either a commercial p53 monoclonal antibody (mAb) or sera from lung cancer patients and healthy volunteers in an enzyme-linked immunosorbent assay (ELISA) format. RESULTS: Both of the immobilized p53 fusion proteins as well as the purified (His)6-p53 fusion protein had a similar dose response of detection to a commercial p53 mAb (DO7). When the biotinylated p53-BCCP fusion protein was used as an antigen to detect p53 autoantibodies in clinical samples, the result showed that human serum reacted strongly to avidin-coated microwell even in the absence of the biotinylated p53-BCCP fusion protein, thus compromised its ability to differentiate weakly positive sera from those that were negative. In contrast, the (His)6-p53 protein immobilized directly onto Ni+ coated microplate was able to identify the p53 autoantibody positive serum. In addition, its reactivity to clinical serum samples highly correlated with those obtained from using purified p53 as an antigen (R = 0.9803, p < 0.0001). Moreover, this directly immobilized p53 antigen can clearly differentiate p53 autoantibody positive sera in cancer patients from healthy volunteers' sera. CONCLUSION: A method of coating directly and specifically TAAs onto a microtiter plate without the purification processes was developed in this study. Although in this study only one tumor antigen was examined, the simplicity and the ability of coated antigens to identify p53 specific autoantibodies in serum accurately might enable a larger panel of TAAs specific autoantibodies to be explored as serological markers for cancer. BioMed Central 2008-02-20 /pmc/articles/PMC2275332/ /pubmed/18284706 http://dx.doi.org/10.1186/1472-6750-8-16 Text en Copyright © 2008 Cressey et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Cressey, Ratchada
Pimpa, Saranya
Chewaskulyong, Busyamas
Lertprasertsuke, Nirush
Saeteng, Somchareon
Tayapiwatana, Chatchai
Kasinrerk, Watchara
Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_full Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_fullStr Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_full_unstemmed Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_short Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_sort simplified approaches for the development of an elisa to detect circulating autoantibodies to p53 in cancer patients
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275332/
https://www.ncbi.nlm.nih.gov/pubmed/18284706
http://dx.doi.org/10.1186/1472-6750-8-16
work_keys_str_mv AT cresseyratchada simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients
AT pimpasaranya simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients
AT chewaskulyongbusyamas simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients
AT lertprasertsukenirush simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients
AT saetengsomchareon simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients
AT tayapiwatanachatchai simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients
AT kasinrerkwatchara simplifiedapproachesforthedevelopmentofanelisatodetectcirculatingautoantibodiestop53incancerpatients