Cargando…

Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies

Highly purified postsynaptic membranes from Torpedo electric organ contain the acetylcholine receptor as well as other proteins. To identify synapse-specific components, we prepared monoclonal antibodies (mabs) to proteins extracted from the membranes with either lithium diiodosalicylate or alkaline...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275609/
https://www.ncbi.nlm.nih.gov/pubmed/6376523
_version_ 1782151882837327872
collection PubMed
description Highly purified postsynaptic membranes from Torpedo electric organ contain the acetylcholine receptor as well as other proteins. To identify synapse-specific components, we prepared monoclonal antibodies (mabs) to proteins extracted from the membranes with either lithium diiodosalicylate or alkaline treatment. 10 mabs specific for three different proteins were obtained. Seven mabs reacted with a major 43,000-mol-wt protein (43K protein). This protein is composed of isoelectric variants (pl = 7.2-7.8) and each of the mabs reacted with all of the variants. Analysis of these mabs by competition for binding to 43K protein and by reaction with proteolytic fragments of 43K protein in immunoblots showed that they recognize at least five different epitopes. Two mabs reacted with a protein of 90,000 mol wt (90K protein) and one with a protein of 58,000 mol wt composed of isoelectric variants (pl = 6.4-6.7) (58K protein). The 43K and 58K proteins appeared to co-purify with the receptor-containing membranes while the 90K protein did not. Immunofluorescence experiments indicated that the anti-43K mabs bind to the innervated face of Torpedo electrocytes and that a component related to the 43K protein is found at the rat neuromuscular junction. The anti-58K mab stained the innervated face, although rather weakly, while the anti-90K mabs reacted intensely with the non-innervated membrane. Thus, the 43K protein and possibly also the 58K protein are synaptic components while the 90K protein is predominantly nonsynaptic.
format Text
id pubmed-2275609
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22756092008-05-01 Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies J Cell Biol Articles Highly purified postsynaptic membranes from Torpedo electric organ contain the acetylcholine receptor as well as other proteins. To identify synapse-specific components, we prepared monoclonal antibodies (mabs) to proteins extracted from the membranes with either lithium diiodosalicylate or alkaline treatment. 10 mabs specific for three different proteins were obtained. Seven mabs reacted with a major 43,000-mol-wt protein (43K protein). This protein is composed of isoelectric variants (pl = 7.2-7.8) and each of the mabs reacted with all of the variants. Analysis of these mabs by competition for binding to 43K protein and by reaction with proteolytic fragments of 43K protein in immunoblots showed that they recognize at least five different epitopes. Two mabs reacted with a protein of 90,000 mol wt (90K protein) and one with a protein of 58,000 mol wt composed of isoelectric variants (pl = 6.4-6.7) (58K protein). The 43K and 58K proteins appeared to co-purify with the receptor-containing membranes while the 90K protein did not. Immunofluorescence experiments indicated that the anti-43K mabs bind to the innervated face of Torpedo electrocytes and that a component related to the 43K protein is found at the rat neuromuscular junction. The anti-58K mab stained the innervated face, although rather weakly, while the anti-90K mabs reacted intensely with the non-innervated membrane. Thus, the 43K protein and possibly also the 58K protein are synaptic components while the 90K protein is predominantly nonsynaptic. The Rockefeller University Press 1984-07-01 /pmc/articles/PMC2275609/ /pubmed/6376523 Text en Copyright © 1984, This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies
title Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies
title_full Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies
title_fullStr Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies
title_full_unstemmed Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies
title_short Peripheral proteins of postsynaptic membranes from Torpedo electric organ identified with monoclonal antibodies
title_sort peripheral proteins of postsynaptic membranes from torpedo electric organ identified with monoclonal antibodies
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275609/
https://www.ncbi.nlm.nih.gov/pubmed/6376523