Cargando…

Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase

In an earlier study I demonstrated that rat brain cytosol contains a Ca2+/calmodulin-dependent protein kinase activity that phosphorylates microtubule-associated protein 2 (MAP-2) but not MAP-1. Comparison of sites of phosphate incorporated in MAP-2 catalyzed by the Ca2+/calmodulin-dependent kinase...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275617/
https://www.ncbi.nlm.nih.gov/pubmed/6736124
_version_ 1782151884719521792
collection PubMed
description In an earlier study I demonstrated that rat brain cytosol contains a Ca2+/calmodulin-dependent protein kinase activity that phosphorylates microtubule-associated protein 2 (MAP-2) but not MAP-1. Comparison of sites of phosphate incorporated in MAP-2 catalyzed by the Ca2+/calmodulin-dependent kinase activity and the cyclic AMP-dependent protein kinase activity in cytosolic extracts revealed distinct sites of phosphorylation (Schulman, H., 1984, Mol. Cell. Biol., 4:1175-1178; abstract by me and J.A. Kuret and K.H. Spitzer [1983, Fed. Proc., 42:2250]. I have now used MAP-2 as a substrate to purify the Ca2+/calmodulin-dependent protein kinase responsible for MAP-2 phosphorylation. The brain appears to contain a single predominant Ca2+/calmodulin-dependent protein kinase that phosphorylates MAP-2. The enzyme was purified to apparent homogeneity by column chromatography using DEAE-cellulose, phosphocellulose, hydroxylapatite, Sepharose 6B, and a calmodulin-Sepharose affinity column. The 580,000-dalton holoenzyme consists of 51,000- and 60,000-dalton subunits. The purified enzyme phosphorylates MAP-2 at the same "sites" that are phosphorylated in cytosolic extracts and thus has the same specificity as the activity present in cytosol. Analysis of phosphorylated MAP-2.1 and MAP-2.2, the two components of MAP-2, suggests considerable homology in their phosphorylated domains.
format Text
id pubmed-2275617
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22756172008-05-01 Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase J Cell Biol Articles In an earlier study I demonstrated that rat brain cytosol contains a Ca2+/calmodulin-dependent protein kinase activity that phosphorylates microtubule-associated protein 2 (MAP-2) but not MAP-1. Comparison of sites of phosphate incorporated in MAP-2 catalyzed by the Ca2+/calmodulin-dependent kinase activity and the cyclic AMP-dependent protein kinase activity in cytosolic extracts revealed distinct sites of phosphorylation (Schulman, H., 1984, Mol. Cell. Biol., 4:1175-1178; abstract by me and J.A. Kuret and K.H. Spitzer [1983, Fed. Proc., 42:2250]. I have now used MAP-2 as a substrate to purify the Ca2+/calmodulin-dependent protein kinase responsible for MAP-2 phosphorylation. The brain appears to contain a single predominant Ca2+/calmodulin-dependent protein kinase that phosphorylates MAP-2. The enzyme was purified to apparent homogeneity by column chromatography using DEAE-cellulose, phosphocellulose, hydroxylapatite, Sepharose 6B, and a calmodulin-Sepharose affinity column. The 580,000-dalton holoenzyme consists of 51,000- and 60,000-dalton subunits. The purified enzyme phosphorylates MAP-2 at the same "sites" that are phosphorylated in cytosolic extracts and thus has the same specificity as the activity present in cytosol. Analysis of phosphorylated MAP-2.1 and MAP-2.2, the two components of MAP-2, suggests considerable homology in their phosphorylated domains. The Rockefeller University Press 1984-07-01 /pmc/articles/PMC2275617/ /pubmed/6736124 Text en Copyright © 1984, This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase
title Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase
title_full Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase
title_fullStr Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase
title_full_unstemmed Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase
title_short Phosphorylation of microtubule-associated proteins by a Ca2+/calmodulin- dependent protein kinase
title_sort phosphorylation of microtubule-associated proteins by a ca2+/calmodulin- dependent protein kinase
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275617/
https://www.ncbi.nlm.nih.gov/pubmed/6736124