Cargando…
Thyrotropin-releasing hormone increases cytosolic free Ca2+ in clonal pituitary cells (GH3 cells): direct evidence for the mobilization of cellular calcium
Changes in the cytosolic free Ca2+ concentration following cell surface receptor activation have been proposed to mediate a wide variety of cellular responses. Using the specific Ca2+ chelator quin2 as a fluorescent intracellular probe, we measured the Ca2+ levels in the cytosol of clonal rat pituit...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275624/ https://www.ncbi.nlm.nih.gov/pubmed/6429159 |
Sumario: | Changes in the cytosolic free Ca2+ concentration following cell surface receptor activation have been proposed to mediate a wide variety of cellular responses. Using the specific Ca2+ chelator quin2 as a fluorescent intracellular probe, we measured the Ca2+ levels in the cytosol of clonal rat pituitary cells, GH3 cells. We demonstrate that thyrotropin-releasing hormone (TRH) at nanomolar concentrations leads to a rapid and transient increase in cytosolic Ca2+. This increase was found to occur in Ca2+-free media in the presence of EGTA, thus at extracellular Ca2+ levels that are below the cytosolic concentrations, and was not prevented by verapamil, a Ca2+ channel blocker. Depolarization of GH3 cells with K+, which can mimic the action of TRH on prolactin release, increased cytosolic Ca2+ levels only in the presence of free extracellular Ca2+, and this increase could be blocked by verapamil. These data show that the mobilization of intracellular Ca2+ due to TRH action that has been proposed by previous studies actually leads to an increase in cytosolic free Ca2+. The kinetic features of this response emphasize the key role of cytosolic free Ca2+ in stimulus-secretion coupling. |
---|