Cargando…
Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification
Conductance of gap junctions in many preparations has been shown to be sensitive to cytoplasmic pH, decreasing as pH decreases below 7.5 in fish and amphibian embryos and below 7.1 in crayfish septate axon. We have found a new class of compounds, benzyl acetate derivatives, that reversibly decrease...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1984
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275633/ https://www.ncbi.nlm.nih.gov/pubmed/6736125 |
_version_ | 1782151888484958208 |
---|---|
collection | PubMed |
description | Conductance of gap junctions in many preparations has been shown to be sensitive to cytoplasmic pH, decreasing as pH decreases below 7.5 in fish and amphibian embryos and below 7.1 in crayfish septate axon. We have found a new class of compounds, benzyl acetate derivatives, that reversibly decrease junctional conductance, gj, when applied in low concentration (approximately 1 mM). Simultaneous intracellular pH (pHi) measurements show that the ester effects are attributable to reduction in pHi. The sensitivity of gj to these compounds and the relative lack of side effects make these agents attractive for studies of the role played by gap junctions in normal tissue function. In addition, the finding of cytoplasmic acidification in response to cell exposure to esters suggests caution in interpretation of results obtained using esterified compounds for intracellular loading. |
format | Text |
id | pubmed-2275633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1984 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22756332008-05-01 Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification J Cell Biol Articles Conductance of gap junctions in many preparations has been shown to be sensitive to cytoplasmic pH, decreasing as pH decreases below 7.5 in fish and amphibian embryos and below 7.1 in crayfish septate axon. We have found a new class of compounds, benzyl acetate derivatives, that reversibly decrease junctional conductance, gj, when applied in low concentration (approximately 1 mM). Simultaneous intracellular pH (pHi) measurements show that the ester effects are attributable to reduction in pHi. The sensitivity of gj to these compounds and the relative lack of side effects make these agents attractive for studies of the role played by gap junctions in normal tissue function. In addition, the finding of cytoplasmic acidification in response to cell exposure to esters suggests caution in interpretation of results obtained using esterified compounds for intracellular loading. The Rockefeller University Press 1984-07-01 /pmc/articles/PMC2275633/ /pubmed/6736125 Text en Copyright © 1984, This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Substituted benzyl acetates: a new class of compounds that reduce gap junctional conductance by cytoplasmic acidification |
title | Substituted benzyl acetates: a new class of compounds that reduce gap
junctional conductance by cytoplasmic acidification |
title_full | Substituted benzyl acetates: a new class of compounds that reduce gap
junctional conductance by cytoplasmic acidification |
title_fullStr | Substituted benzyl acetates: a new class of compounds that reduce gap
junctional conductance by cytoplasmic acidification |
title_full_unstemmed | Substituted benzyl acetates: a new class of compounds that reduce gap
junctional conductance by cytoplasmic acidification |
title_short | Substituted benzyl acetates: a new class of compounds that reduce gap
junctional conductance by cytoplasmic acidification |
title_sort | substituted benzyl acetates: a new class of compounds that reduce gap
junctional conductance by cytoplasmic acidification |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275633/ https://www.ncbi.nlm.nih.gov/pubmed/6736125 |