Cargando…

Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies

Cotyledons of the common bean (Phaseolus vulgaris L.) synthesize large amounts of the lectin phytohemagglutinin (PHA) during seed development. The polypeptides of PHA are synthesized by endoplasmic reticulum-bound polysomes and co-translationally glycosylated, pass through the Golgi complex, and acc...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1984
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275646/
https://www.ncbi.nlm.nih.gov/pubmed/6429153
_version_ 1782151891534217216
collection PubMed
description Cotyledons of the common bean (Phaseolus vulgaris L.) synthesize large amounts of the lectin phytohemagglutinin (PHA) during seed development. The polypeptides of PHA are synthesized by endoplasmic reticulum-bound polysomes and co-translationally glycosylated, pass through the Golgi complex, and accumulate in protein bodies, which constitute the lysosomal compartment in these cells. Some of the high-mannose sidechains of PHA are modified in the Golgi complex, and in mature PHA they contain N-acetylglucosamine, mannose, fucose, and xylose in the molar ratios 2, 3.8, 0.6, and 0.5. The results reported here show that the Golgi complex is also the site of additional N-acetylglucosamine incorporation into the modified sidechains. When developing cotyledons are labeled with [3H]glucosamine and glycopeptides of PHA present in the Golgi complex isolated, the radioactivity can be released as [3H]N- acetylglucosamine by digestion of the glycopeptides with beta-N- acetylglucosaminidase, indicating that the residues are in a terminal position. Arrival of PHA in the protein bodies is followed by the slow removal of these terminal N-acetylglucosamine residues, resulting in a decrease in the Mr of the modified sidechains. The biosynthetic intermediates of the glycoproteins destined for the lysosomal compartments of animal cells contain high-mannose sidechains modified by phosphate groups covered by N-acetylglucosamine that is labile to mild acid treatment. When cotyledons are labeled with [32P]orthophosphate, there is no radioactivity in PHA obtained from any of the subcellular fractions. There is also no release of radioactivity when [3H]glucosamine-labeled glycopeptides obtained from PHA in the Golgi complex are subjected to mild acid hydrolysis. These results indicate that the sorting-signals and posttranslational processing steps for proteins that are transported to the lysosomal compartment are different in plant cells and animal cells.
format Text
id pubmed-2275646
institution National Center for Biotechnology Information
language English
publishDate 1984
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22756462008-05-01 Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies J Cell Biol Articles Cotyledons of the common bean (Phaseolus vulgaris L.) synthesize large amounts of the lectin phytohemagglutinin (PHA) during seed development. The polypeptides of PHA are synthesized by endoplasmic reticulum-bound polysomes and co-translationally glycosylated, pass through the Golgi complex, and accumulate in protein bodies, which constitute the lysosomal compartment in these cells. Some of the high-mannose sidechains of PHA are modified in the Golgi complex, and in mature PHA they contain N-acetylglucosamine, mannose, fucose, and xylose in the molar ratios 2, 3.8, 0.6, and 0.5. The results reported here show that the Golgi complex is also the site of additional N-acetylglucosamine incorporation into the modified sidechains. When developing cotyledons are labeled with [3H]glucosamine and glycopeptides of PHA present in the Golgi complex isolated, the radioactivity can be released as [3H]N- acetylglucosamine by digestion of the glycopeptides with beta-N- acetylglucosaminidase, indicating that the residues are in a terminal position. Arrival of PHA in the protein bodies is followed by the slow removal of these terminal N-acetylglucosamine residues, resulting in a decrease in the Mr of the modified sidechains. The biosynthetic intermediates of the glycoproteins destined for the lysosomal compartments of animal cells contain high-mannose sidechains modified by phosphate groups covered by N-acetylglucosamine that is labile to mild acid treatment. When cotyledons are labeled with [32P]orthophosphate, there is no radioactivity in PHA obtained from any of the subcellular fractions. There is also no release of radioactivity when [3H]glucosamine-labeled glycopeptides obtained from PHA in the Golgi complex are subjected to mild acid hydrolysis. These results indicate that the sorting-signals and posttranslational processing steps for proteins that are transported to the lysosomal compartment are different in plant cells and animal cells. The Rockefeller University Press 1984-07-01 /pmc/articles/PMC2275646/ /pubmed/6429153 Text en Copyright © 1984, This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies
title Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies
title_full Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies
title_fullStr Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies
title_full_unstemmed Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies
title_short Transient N-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the Golgi apparatus and removal in protein bodies
title_sort transient n-acetylglucosamine in the biosynthesis of phytohemagglutinin: attachment in the golgi apparatus and removal in protein bodies
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2275646/
https://www.ncbi.nlm.nih.gov/pubmed/6429153