Cargando…
Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations
Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived st...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276370/ https://www.ncbi.nlm.nih.gov/pubmed/18252712 http://dx.doi.org/10.1074/jbc.M709587200 |
_version_ | 1782151989740699648 |
---|---|
author | Hocking, Henry G. Herbert, Andrew P. Kavanagh, David Soares, Dinesh C. Ferreira, Viviana P. Pangburn, Michael K. Uhrín, Dusan Barlow, Paul N. |
author_facet | Hocking, Henry G. Herbert, Andrew P. Kavanagh, David Soares, Dinesh C. Ferreira, Viviana P. Pangburn, Michael K. Uhrín, Dusan Barlow, Paul N. |
author_sort | Hocking, Henry G. |
collection | PubMed |
description | Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an ∼105-Å-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 °C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface. |
format | Text |
id | pubmed-2276370 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-22763702008-08-28 Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations Hocking, Henry G. Herbert, Andrew P. Kavanagh, David Soares, Dinesh C. Ferreira, Viviana P. Pangburn, Michael K. Uhrín, Dusan Barlow, Paul N. J Biol Chem Protein Structure and Folding Factor H is a regulatory glycoprotein of the complement system. We expressed the three N-terminal complement control protein modules of human factor H (FH1-3) and confirmed FH1-3 to be the minimal unit with cofactor activity for C3b proteolysis by factor I. We reconstructed FH1-3 from NMR-derived structures of FH1-2 and FH2-3 revealing an ∼105-Å-long rod-like arrangement of the modules. In structural comparisons with other C3b-engaging proteins, factor H module 3 most closely resembles factor B module 3, consistent with factor H competing with factor B for binding C3b. Factor H modules 1, 2, and 3 each has a similar backbone structure to first, second, and third modules, respectively, of functional sites in decay accelerating factor and complement receptor type 1; the equivalent intermodular tilt and twist angles are also broadly similar. Resemblance between molecular surfaces is closest for first modules but absent in the case of second modules. Substitution of buried Val-62 with Ile (a factor H single nucleotide polymorphism potentially protective for age-related macular degeneration and dense deposit disease) causes rearrangements within the module 1 core and increases thermal stability but does not disturb the interface with module 2. Replacement of partially exposed (in module 1) Arg-53 by His (an atypical hemolytic uremic syndrome-linked mutation) did not impair structural integrity at 37 °C, but this FH1-2 mutant was less stable at higher temperatures; furthermore, chemical shift differences indicated potential for small structural changes at the module 1-2 interface. American Society for Biochemistry and Molecular Biology 2008-04-04 /pmc/articles/PMC2276370/ /pubmed/18252712 http://dx.doi.org/10.1074/jbc.M709587200 Text en Copyright © 2008, The American Society for Biochemistry and Molecular Biology, Inc. Author's Choice Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Protein Structure and Folding Hocking, Henry G. Herbert, Andrew P. Kavanagh, David Soares, Dinesh C. Ferreira, Viviana P. Pangburn, Michael K. Uhrín, Dusan Barlow, Paul N. Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations |
title | Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations |
title_full | Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations |
title_fullStr | Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations |
title_full_unstemmed | Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations |
title_short | Structure of the N-terminal Region of Complement Factor H and Conformational Implications of Disease-linked Sequence Variations |
title_sort | structure of the n-terminal region of complement factor h and conformational implications of disease-linked sequence variations |
topic | Protein Structure and Folding |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276370/ https://www.ncbi.nlm.nih.gov/pubmed/18252712 http://dx.doi.org/10.1074/jbc.M709587200 |
work_keys_str_mv | AT hockinghenryg structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT herbertandrewp structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT kavanaghdavid structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT soaresdineshc structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT ferreiravivianap structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT pangburnmichaelk structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT uhrindusan structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations AT barlowpauln structureofthenterminalregionofcomplementfactorhandconformationalimplicationsofdiseaselinkedsequencevariations |