Cargando…

Design of Biotin-Functionalized Luminescent Quantum Dots

We report the design and synthesis of a tetraethylene glycol- (TEG-) based bidentate ligand functionalized with dihydrolipoic acid (DHLA) and biotin (DHLA—TEG—biotin) to promote biocompatibility of luminescent quantum dots (QD's). This new ligand readily binds to CdSe—ZnS core-shell QDs via sur...

Descripción completa

Detalles Bibliográficos
Autores principales: Susumu, Kimihiro, Uyeda, H. Tetsuo, Medintz, Igor L., Mattoussi, Hedi
Formato: Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2276867/
https://www.ncbi.nlm.nih.gov/pubmed/18382625
http://dx.doi.org/10.1155/2007/90651
Descripción
Sumario:We report the design and synthesis of a tetraethylene glycol- (TEG-) based bidentate ligand functionalized with dihydrolipoic acid (DHLA) and biotin (DHLA—TEG—biotin) to promote biocompatibility of luminescent quantum dots (QD's). This new ligand readily binds to CdSe—ZnS core-shell QDs via surface ligand exchange. QDs capped with a mixture of DHLA and DHLA—TEG—biotin or polyethylene glycol- (PEG-) (molecular weight average ∼600) modified DHLA (DHLA—PEG600) and DHLA—TEG—biotin are easily dispersed in aqueous buffer solutions. In particular, homogeneous buffer solutions of QDs capped with a mixture of DHLA—PEG600 and DHLA—TEG—biotin that are stable over broad pH range have been prepared. QDs coated with mixtures of DHLA/DHLA—TEG—biotin and with DHLA—PEG600/DHLA—TEG—biotin were tested in surface binding assays and the results indicate that biotin groups on the QD surface interact specifically with NeutrAvidin-functionalized microtiter well plates.