Cargando…
Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes
BACKGROUND: Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We ther...
Autores principales: | , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277410/ https://www.ncbi.nlm.nih.gov/pubmed/18315867 http://dx.doi.org/10.1186/1471-2164-9-113 |
_version_ | 1782152024274501632 |
---|---|
author | Panjabi, Priya Jagannath, Arun Bisht, Naveen C Padmaja, K Lakshmi Sharma, Sarita Gupta, Vibha Pradhan, Akshay K Pental, Deepak |
author_facet | Panjabi, Priya Jagannath, Arun Bisht, Naveen C Padmaja, K Lakshmi Sharma, Sarita Gupta, Vibha Pradhan, Akshay K Pental, Deepak |
author_sort | Panjabi, Priya |
collection | PubMed |
description | BACKGROUND: Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the arrangement of 24 (previously described) genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. RESULTS: IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study) with the A and B genomes of B. napus and B. nigra respectively (described earlier), revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG) each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. CONCLUSION: IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements, translocations and fusions pivotal to karyotype diversification between the A, B and C genomes of Brassica species. The inter-relationships established between the Brassica lineages vis-à-vis Arabidopsis would facilitate the identification and isolation of candidate genes contributing to traits of agronomic value in crop Brassicas and the development of unified tools for Brassica genomics. |
format | Text |
id | pubmed-2277410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22774102008-04-01 Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes Panjabi, Priya Jagannath, Arun Bisht, Naveen C Padmaja, K Lakshmi Sharma, Sarita Gupta, Vibha Pradhan, Akshay K Pental, Deepak BMC Genomics Research Article BACKGROUND: Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the arrangement of 24 (previously described) genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. RESULTS: IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study) with the A and B genomes of B. napus and B. nigra respectively (described earlier), revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG) each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. CONCLUSION: IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements, translocations and fusions pivotal to karyotype diversification between the A, B and C genomes of Brassica species. The inter-relationships established between the Brassica lineages vis-à-vis Arabidopsis would facilitate the identification and isolation of candidate genes contributing to traits of agronomic value in crop Brassicas and the development of unified tools for Brassica genomics. BioMed Central 2008-03-03 /pmc/articles/PMC2277410/ /pubmed/18315867 http://dx.doi.org/10.1186/1471-2164-9-113 Text en Copyright © 2008 Panjabi et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Panjabi, Priya Jagannath, Arun Bisht, Naveen C Padmaja, K Lakshmi Sharma, Sarita Gupta, Vibha Pradhan, Akshay K Pental, Deepak Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes |
title | Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes |
title_full | Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes |
title_fullStr | Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes |
title_full_unstemmed | Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes |
title_short | Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes |
title_sort | comparative mapping of brassica juncea and arabidopsis thaliana using intron polymorphism (ip) markers: homoeologous relationships, diversification and evolution of the a, b and c brassica genomes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2277410/ https://www.ncbi.nlm.nih.gov/pubmed/18315867 http://dx.doi.org/10.1186/1471-2164-9-113 |
work_keys_str_mv | AT panjabipriya comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT jagannatharun comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT bishtnaveenc comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT padmajaklakshmi comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT sharmasarita comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT guptavibha comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT pradhanakshayk comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes AT pentaldeepak comparativemappingofbrassicajunceaandarabidopsisthalianausingintronpolymorphismipmarkershomoeologousrelationshipsdiversificationandevolutionoftheabandcbrassicagenomes |