Cargando…
Fungi have three tetraspanin families with distinct functions
BACKGROUND: Tetraspanins are small membrane proteins that belong to a superfamily encompassing 33 members in human and mouse. These proteins act as organizers of membrane-signalling complexes. So far only two tetraspanin families have been identified in fungi. These are Pls1, which is required for p...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278132/ https://www.ncbi.nlm.nih.gov/pubmed/18241352 http://dx.doi.org/10.1186/1471-2164-9-63 |
_version_ | 1782152041710223360 |
---|---|
author | Lambou, Karine Tharreau, Didier Kohler, Annegret Sirven, Catherine Marguerettaz, Mélanie Barbisan, Crystel Sexton, Adrienne C Kellner, Ellen M Martin, Francis Howlett, Barbara J Orbach, Marc J Lebrun, Marc-Henri |
author_facet | Lambou, Karine Tharreau, Didier Kohler, Annegret Sirven, Catherine Marguerettaz, Mélanie Barbisan, Crystel Sexton, Adrienne C Kellner, Ellen M Martin, Francis Howlett, Barbara J Orbach, Marc J Lebrun, Marc-Henri |
author_sort | Lambou, Karine |
collection | PubMed |
description | BACKGROUND: Tetraspanins are small membrane proteins that belong to a superfamily encompassing 33 members in human and mouse. These proteins act as organizers of membrane-signalling complexes. So far only two tetraspanin families have been identified in fungi. These are Pls1, which is required for pathogenicity of the plant pathogenic ascomycetes, Magnaporthe grisea, Botrytis cinerea and Colletotrichum lindemuthianum, and Tsp2, whose function is unknown. In this report, we describe a third family of tetraspanins (Tsp3) and a new family of tetraspanin-like proteins (Tpl1) in fungi. We also describe expression of some of these genes in M. grisea and a basidiomycete, Laccaria bicolor, and also their functional analysis in M. grisea. RESULTS: The exhaustive search for tetraspanins in fungal genomes reveals that higher fungi (basidiomycetes and ascomycetes) contain three families of tetraspanins (Pls1, Tsp2 and Tsp3) with different distribution amongst phyla. Pls1 is found in ascomycetes and basidiomycetes, whereas Tsp2 is restricted to basidiomycetes and Tsp3 to ascomycetes. A unique copy of each of PLS1 and TSP3 was found in ascomycetes in contrast to TSP2, which has several paralogs in the basidiomycetes, Coprinus cinereus and Laccaria bicolor. A tetraspanin-like family (Tpl1) was also identified in ascomycetes. Transcriptional analyses in various tissues of L. bicolor and M. grisea showed that PLS1 and TSP2 are expressed in all tissues in L. bicolor and that TSP3 and TPL1 are overexpressed in the sexual fruiting bodies (perithecia) and mycelia of M. grisea, suggesting that these genes are not pseudogenes. Phenotypic analysis of gene replacementmutants Δtsp3 and Δtpl1 of M. grisea revealed a reduction of the pathogenicity only on rice, in contrast to Δpls1 mutants, which are completely non-pathogenic on barley and rice. CONCLUSION: A new tetraspanin family (Tsp3) and a tetraspanin-like protein family (Tpl1) have been identified in fungi. Functional analysis by gene replacement showed that these proteins, as well as Pls1, are involved in the infection process of the plant pathogenic fungus M. grisea. The next challenge will be to decipher the role(s) of tetraspanins in a range of symbiotic, saprophytic and human pathogenic fungi. |
format | Text |
id | pubmed-2278132 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-22781322008-04-02 Fungi have three tetraspanin families with distinct functions Lambou, Karine Tharreau, Didier Kohler, Annegret Sirven, Catherine Marguerettaz, Mélanie Barbisan, Crystel Sexton, Adrienne C Kellner, Ellen M Martin, Francis Howlett, Barbara J Orbach, Marc J Lebrun, Marc-Henri BMC Genomics Research Article BACKGROUND: Tetraspanins are small membrane proteins that belong to a superfamily encompassing 33 members in human and mouse. These proteins act as organizers of membrane-signalling complexes. So far only two tetraspanin families have been identified in fungi. These are Pls1, which is required for pathogenicity of the plant pathogenic ascomycetes, Magnaporthe grisea, Botrytis cinerea and Colletotrichum lindemuthianum, and Tsp2, whose function is unknown. In this report, we describe a third family of tetraspanins (Tsp3) and a new family of tetraspanin-like proteins (Tpl1) in fungi. We also describe expression of some of these genes in M. grisea and a basidiomycete, Laccaria bicolor, and also their functional analysis in M. grisea. RESULTS: The exhaustive search for tetraspanins in fungal genomes reveals that higher fungi (basidiomycetes and ascomycetes) contain three families of tetraspanins (Pls1, Tsp2 and Tsp3) with different distribution amongst phyla. Pls1 is found in ascomycetes and basidiomycetes, whereas Tsp2 is restricted to basidiomycetes and Tsp3 to ascomycetes. A unique copy of each of PLS1 and TSP3 was found in ascomycetes in contrast to TSP2, which has several paralogs in the basidiomycetes, Coprinus cinereus and Laccaria bicolor. A tetraspanin-like family (Tpl1) was also identified in ascomycetes. Transcriptional analyses in various tissues of L. bicolor and M. grisea showed that PLS1 and TSP2 are expressed in all tissues in L. bicolor and that TSP3 and TPL1 are overexpressed in the sexual fruiting bodies (perithecia) and mycelia of M. grisea, suggesting that these genes are not pseudogenes. Phenotypic analysis of gene replacementmutants Δtsp3 and Δtpl1 of M. grisea revealed a reduction of the pathogenicity only on rice, in contrast to Δpls1 mutants, which are completely non-pathogenic on barley and rice. CONCLUSION: A new tetraspanin family (Tsp3) and a tetraspanin-like protein family (Tpl1) have been identified in fungi. Functional analysis by gene replacement showed that these proteins, as well as Pls1, are involved in the infection process of the plant pathogenic fungus M. grisea. The next challenge will be to decipher the role(s) of tetraspanins in a range of symbiotic, saprophytic and human pathogenic fungi. BioMed Central 2008-02-03 /pmc/articles/PMC2278132/ /pubmed/18241352 http://dx.doi.org/10.1186/1471-2164-9-63 Text en Copyright © 2008 Lambou et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lambou, Karine Tharreau, Didier Kohler, Annegret Sirven, Catherine Marguerettaz, Mélanie Barbisan, Crystel Sexton, Adrienne C Kellner, Ellen M Martin, Francis Howlett, Barbara J Orbach, Marc J Lebrun, Marc-Henri Fungi have three tetraspanin families with distinct functions |
title | Fungi have three tetraspanin families with distinct functions |
title_full | Fungi have three tetraspanin families with distinct functions |
title_fullStr | Fungi have three tetraspanin families with distinct functions |
title_full_unstemmed | Fungi have three tetraspanin families with distinct functions |
title_short | Fungi have three tetraspanin families with distinct functions |
title_sort | fungi have three tetraspanin families with distinct functions |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278132/ https://www.ncbi.nlm.nih.gov/pubmed/18241352 http://dx.doi.org/10.1186/1471-2164-9-63 |
work_keys_str_mv | AT lamboukarine fungihavethreetetraspaninfamilieswithdistinctfunctions AT tharreaudidier fungihavethreetetraspaninfamilieswithdistinctfunctions AT kohlerannegret fungihavethreetetraspaninfamilieswithdistinctfunctions AT sirvencatherine fungihavethreetetraspaninfamilieswithdistinctfunctions AT marguerettazmelanie fungihavethreetetraspaninfamilieswithdistinctfunctions AT barbisancrystel fungihavethreetetraspaninfamilieswithdistinctfunctions AT sextonadriennec fungihavethreetetraspaninfamilieswithdistinctfunctions AT kellnerellenm fungihavethreetetraspaninfamilieswithdistinctfunctions AT martinfrancis fungihavethreetetraspaninfamilieswithdistinctfunctions AT howlettbarbaraj fungihavethreetetraspaninfamilieswithdistinctfunctions AT orbachmarcj fungihavethreetetraspaninfamilieswithdistinctfunctions AT lebrunmarchenri fungihavethreetetraspaninfamilieswithdistinctfunctions |