Cargando…
Pushing for answers: is myosin V directly involved in moving mitochondria?
In budding yeast, the actin-based class V myosin motors, Myo2 and Myo4, transport virtually all organelles from mother to bud during cell division. Until recently, it appeared that mitochondria may be an exception, with studies showing that the Arp2/3 complex is required for their movement. However,...
Autores principales: | , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2287276/ https://www.ncbi.nlm.nih.gov/pubmed/18391069 http://dx.doi.org/10.1083/jcb.200803064 |
Sumario: | In budding yeast, the actin-based class V myosin motors, Myo2 and Myo4, transport virtually all organelles from mother to bud during cell division. Until recently, it appeared that mitochondria may be an exception, with studies showing that the Arp2/3 complex is required for their movement. However, several recent studies have proposed that Myo2 has a direct involvement in mitochondria inheritance. In this issue, Altmann et al. (Altmann, K., M. Frank, D. Neumann, S. Jakobs, and B. Westermann. 2008. J. Cell Biol. 181:119–130) provide the strongest support yet that Myo2 and its associated light chain Mlc1 function directly and significantly in both mitochondria–actin interactions and in the movement of mitochondria from mother to bud. The conflicting functions of Arp 2/3 and Myo2 may be reconciled by the existence of multiple pathways involved in mitochondrial transport. |
---|