Cargando…
Potential Therapeutic Targets for PPARγ after Spinal Cord Injury
Traumatic injury to the spinal cord results in multiple anatomical, physiological, and functional deficits as a result of local neuronal and glial cell death as well as loss of descending and ascending axons traversing the injury site. The many different mechanisms thought to contribute to protracte...
Autor principal: | |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288640/ https://www.ncbi.nlm.nih.gov/pubmed/18401444 http://dx.doi.org/10.1155/2008/517162 |
Sumario: | Traumatic injury to the spinal cord results in multiple anatomical, physiological, and functional deficits as a result of local neuronal and glial cell death as well as loss of descending and ascending axons traversing the injury site. The many different mechanisms thought to contribute to protracted secondary cell death and dysfunction after spinal cord injury (SCI) are potential therapeutic targets. Agents that bind and activate the transcription factor peroxisome proliferator-activated receptor-γ (PPAR-γ) show great promise for minimizing or preventing these deleterious cascades in other models of CNS disorders. This review will summarize the major secondary injury cascades occurring after SCI and discuss data from experimental CNS injury and disease models showing the exciting potential for PPARγ therapies after SCI. |
---|