Cargando…

Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium

Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Trans...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288804/
https://www.ncbi.nlm.nih.gov/pubmed/1986006
_version_ 1782152111346155520
collection PubMed
description Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359).
format Text
id pubmed-2288804
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22888042008-05-01 Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium J Cell Biol Articles Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359). The Rockefeller University Press 1991-01-01 /pmc/articles/PMC2288804/ /pubmed/1986006 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium
title Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium
title_full Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium
title_fullStr Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium
title_full_unstemmed Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium
title_short Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium
title_sort reconstitution of constitutive secretion using semi-intact cells: regulation by gtp but not calcium
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288804/
https://www.ncbi.nlm.nih.gov/pubmed/1986006