Cargando…

Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ

Our previous immunofluorescence studies support the conclusion that the temporal appearance and subcellular distribution of TS28 (a marker of transverse (T) tubules and caveolae in adult skeletal muscle [Jorgensen, A. O., W. Arnold, A. C.-Y. Shen. S. Yuan, M. Gover, and K. P. Campbell, 1990, J. Cell...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288817/
https://www.ncbi.nlm.nih.gov/pubmed/1846372
_version_ 1782152114207719424
collection PubMed
description Our previous immunofluorescence studies support the conclusion that the temporal appearance and subcellular distribution of TS28 (a marker of transverse (T) tubules and caveolae in adult skeletal muscle [Jorgensen, A. O., W. Arnold, A. C.-Y. Shen. S. Yuan, M. Gover, and K. P. Campbell, 1990, J. Cell Biol. 110:1173-1185]), correspond very closely to those of T-tubules forming de novo in developing rabbit skeletal muscle (Yuan, S., W. Arnold, and A. O. Jorgensen, 1990, J. Cell Biol. 110:1187-1198). To extend our morphological studies of the biogenesis of T-tubules and triads, the temporal appearance and subcellular distribution of the alpha 1-subunit of the 1,4- dihydropyridine receptor (a marker of the T-tubules and caveolae) was compared to (a) that of TS28; and (b) that of the ryanodine receptor (a marker of the junctional sarcoplasmic reticulum) in rabbit skeletal muscle cells developing in situ (day 19 of gestation to 10 d newborn) by double immunofluorescence labeling. The results presented show that the temporal appearance and relative subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (alpha 1-DHPR) are distinct from those of TS28 at the onset of the biogenesis of T- tubules. Thus, in a particular developing myotube the alpha 1-DHPR appeared before TS28 (secondary myotubes; day 19-24 of gestation). Furthermore, the alpha 1-DHPR was distributed in discrete foci at the outer zone of the cytosol, while TS28 was confined to foci and rod-like structures at the cell periphery. As development proceeded (primary myotubes; day 24 of gestation) approximately 50% of the foci were positively labeled for both TS28 and the alpha 1-DHPR, while approximately 20 and 30% of the foci were uniquely labeled for TS28 and the alpha 1-DHPR, respectively. The foci labeled for both TS28 and the alpha 1-DHPR and the foci uniquely labeled for TS28 were generally confined to the cell periphery, while the foci uniquely labeled for the alpha 1-DHPR were mostly confined to the outer zone of the cytosol. 1-2 d after birth, TS28 was distributed in a chickenwire-like network throughout the cytosol, while the alpha 1-DHPR was confined to cytosolic foci. In contrast, the temporal appearance and subcellular distribution of the alpha 1-DHPR and the ryanodine receptor were very similar, if not identical, throughout all the stages of the de novo biogenesis of T-tubules and triads examined.(ABSTRACT TRUNCATED AT 400 WORDS)
format Text
id pubmed-2288817
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22888172008-05-01 Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ J Cell Biol Articles Our previous immunofluorescence studies support the conclusion that the temporal appearance and subcellular distribution of TS28 (a marker of transverse (T) tubules and caveolae in adult skeletal muscle [Jorgensen, A. O., W. Arnold, A. C.-Y. Shen. S. Yuan, M. Gover, and K. P. Campbell, 1990, J. Cell Biol. 110:1173-1185]), correspond very closely to those of T-tubules forming de novo in developing rabbit skeletal muscle (Yuan, S., W. Arnold, and A. O. Jorgensen, 1990, J. Cell Biol. 110:1187-1198). To extend our morphological studies of the biogenesis of T-tubules and triads, the temporal appearance and subcellular distribution of the alpha 1-subunit of the 1,4- dihydropyridine receptor (a marker of the T-tubules and caveolae) was compared to (a) that of TS28; and (b) that of the ryanodine receptor (a marker of the junctional sarcoplasmic reticulum) in rabbit skeletal muscle cells developing in situ (day 19 of gestation to 10 d newborn) by double immunofluorescence labeling. The results presented show that the temporal appearance and relative subcellular distribution of the alpha 1-subunit of the 1,4-dihydropyridine receptor (alpha 1-DHPR) are distinct from those of TS28 at the onset of the biogenesis of T- tubules. Thus, in a particular developing myotube the alpha 1-DHPR appeared before TS28 (secondary myotubes; day 19-24 of gestation). Furthermore, the alpha 1-DHPR was distributed in discrete foci at the outer zone of the cytosol, while TS28 was confined to foci and rod-like structures at the cell periphery. As development proceeded (primary myotubes; day 24 of gestation) approximately 50% of the foci were positively labeled for both TS28 and the alpha 1-DHPR, while approximately 20 and 30% of the foci were uniquely labeled for TS28 and the alpha 1-DHPR, respectively. The foci labeled for both TS28 and the alpha 1-DHPR and the foci uniquely labeled for TS28 were generally confined to the cell periphery, while the foci uniquely labeled for the alpha 1-DHPR were mostly confined to the outer zone of the cytosol. 1-2 d after birth, TS28 was distributed in a chickenwire-like network throughout the cytosol, while the alpha 1-DHPR was confined to cytosolic foci. In contrast, the temporal appearance and subcellular distribution of the alpha 1-DHPR and the ryanodine receptor were very similar, if not identical, throughout all the stages of the de novo biogenesis of T-tubules and triads examined.(ABSTRACT TRUNCATED AT 400 WORDS) The Rockefeller University Press 1991-01-02 /pmc/articles/PMC2288817/ /pubmed/1846372 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
title Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
title_full Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
title_fullStr Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
title_full_unstemmed Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
title_short Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
title_sort biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, ts28, and the ryanodine receptor in rabbit skeletal muscle developing in situ
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288817/
https://www.ncbi.nlm.nih.gov/pubmed/1846372