Cargando…
The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function
We have examined the chromatin structure of centromere regions from the fission yeast Schizosaccharomyces pombe. The large and complex centromere regions of the S. pombe chromosomes encompass many kilobase pairs of DNA and contain several classes of tandemly repeated DNA sequences. The repeated sequ...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288823/ https://www.ncbi.nlm.nih.gov/pubmed/1988457 |
_version_ | 1782152115792117760 |
---|---|
collection | PubMed |
description | We have examined the chromatin structure of centromere regions from the fission yeast Schizosaccharomyces pombe. The large and complex centromere regions of the S. pombe chromosomes encompass many kilobase pairs of DNA and contain several classes of tandemly repeated DNA sequences. The repeated sequences are further organized into a large inverted repeat flanking a central core, a conserved structural feature among all three centromeres in S. pombe. The nucleosomal configuration of the centromere regions is nonuniform and highly varied. Most of the centromere-specific repeated DNA sequences are packaged into nucleosomes typical of bulk chromatin. However, the central core and core-associated repeated sequences from the centromere regions of chromosomes I (cen1) and II (cen2), when present in S. pombe, show an altered chromatin structure, with little or no evidence of regular nucleosomal packaging. The atypical chromatin organization of the cen2 central core is not due to transcription, as no transcripts from this region were detected. These same DNA sequences, however, are packaged into nucleosomes typical of bulk chromatin when present in a nonfunctional environment on a minichromosome in the budding yeast Saccharomyces cerevisiae. Because the cen2 central core sequences themselves do not preclude regular nucleosomal packaging, we speculate that in S. pombe they constitute a specialized site of kinetochore protein assembly. The atypical nucleosomal pattern of the cen2 central core remains constant during the cell cycle, with only minor differences observed for some sequences. We propose that the unusual chromatin organization of the core region forms the basis of a higher order structural differentiation that distinguishes the centromere from the chromosome arms and specifies the essential structure for centromere function. |
format | Text |
id | pubmed-2288823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22888232008-05-01 The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function J Cell Biol Articles We have examined the chromatin structure of centromere regions from the fission yeast Schizosaccharomyces pombe. The large and complex centromere regions of the S. pombe chromosomes encompass many kilobase pairs of DNA and contain several classes of tandemly repeated DNA sequences. The repeated sequences are further organized into a large inverted repeat flanking a central core, a conserved structural feature among all three centromeres in S. pombe. The nucleosomal configuration of the centromere regions is nonuniform and highly varied. Most of the centromere-specific repeated DNA sequences are packaged into nucleosomes typical of bulk chromatin. However, the central core and core-associated repeated sequences from the centromere regions of chromosomes I (cen1) and II (cen2), when present in S. pombe, show an altered chromatin structure, with little or no evidence of regular nucleosomal packaging. The atypical chromatin organization of the cen2 central core is not due to transcription, as no transcripts from this region were detected. These same DNA sequences, however, are packaged into nucleosomes typical of bulk chromatin when present in a nonfunctional environment on a minichromosome in the budding yeast Saccharomyces cerevisiae. Because the cen2 central core sequences themselves do not preclude regular nucleosomal packaging, we speculate that in S. pombe they constitute a specialized site of kinetochore protein assembly. The atypical nucleosomal pattern of the cen2 central core remains constant during the cell cycle, with only minor differences observed for some sequences. We propose that the unusual chromatin organization of the core region forms the basis of a higher order structural differentiation that distinguishes the centromere from the chromosome arms and specifies the essential structure for centromere function. The Rockefeller University Press 1991-01-02 /pmc/articles/PMC2288823/ /pubmed/1988457 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
title | The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
title_full | The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
title_fullStr | The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
title_full_unstemmed | The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
title_short | The chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
title_sort | chromatin structure of centromeres from fission yeast: differentiation of the central core that correlates with function |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288823/ https://www.ncbi.nlm.nih.gov/pubmed/1988457 |