Cargando…

The nuclear membrane determines the timing of DNA replication in Xenopus egg extracts

We have exploited a property of chicken erythrocyte nuclei to analyze the regulation of DNA replication in a cell-free system from Xenopus eggs. Many individual demembranated nuclei added to the extract often became enclosed within a common nuclear membrane. Nuclei within such a "multinuclear a...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288850/
https://www.ncbi.nlm.nih.gov/pubmed/1993731
Descripción
Sumario:We have exploited a property of chicken erythrocyte nuclei to analyze the regulation of DNA replication in a cell-free system from Xenopus eggs. Many individual demembranated nuclei added to the extract often became enclosed within a common nuclear membrane. Nuclei within such a "multinuclear aggregate" lacked individual membranes but shared the perimeter membrane of the aggregate. Individual nuclei that were excluded from the aggregates initiated DNA synthesis at different times over a 10-12-h period, as judged by incorporation of biotinylated dUTP into discrete replication foci at early times, followed by uniformly intense incorporation at later times. Replication forks were clustered in spots, rings, and horseshoe-shaped structures similar to those described in cultured cells. In contrast to the asynchronous replication seen between individual nuclei, replication within multinuclear aggregates was synchronous. There was a uniform distribution and similar fluorescent intensity of the replication foci throughout all the nuclei enclosed within the same membrane. However, different multinuclear aggregates replicated out of synchrony with each other indicating that each membrane-bound aggregate acts as an individual unit of replication. These data indicate that the nuclear membrane defines the unit of DNA replication and determines the timing of DNA synthesis in egg extract resulting in highly coordinated triggering of DNA replication on the DNA it encloses.