Cargando…

Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family

Multiple spontaneous transient elevations of cytosolic-free calcium ([Ca2+]i) are observed in single human neutrophils during adherence. The interrelation between adherence and spontaneous [Ca2+]i transients was analyzed by simultaneous monitoring of [Ca2+]i and cell morphology. Fluorescent images o...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288892/
https://www.ncbi.nlm.nih.gov/pubmed/1900302
_version_ 1782152132247420928
collection PubMed
description Multiple spontaneous transient elevations of cytosolic-free calcium ([Ca2+]i) are observed in single human neutrophils during adherence. The interrelation between adherence and spontaneous [Ca2+]i transients was analyzed by simultaneous monitoring of [Ca2+]i and cell morphology. Fluorescent images of fura 2-loaded neutrophils attached to albumin- coated glass were recorded with a high sensitivity CCD camera while [Ca2+]i was assessed with a dual excitation microfluorimetry. The majority of the initially round cells studied showed changes in shape which started either before or at the same time as the onset of the [Ca2+]i transients. These data suggested that a rise in [Ca2+]i is not a prerequisite for shape change. This conclusion was confirmed by observation of movement and spreading in cells whose [Ca2+]i transients were abolished by chelation of extracellular Ca2+. Instead, our data suggest that spreading or adhesion itself initiates the [Ca2+]i activity. In keeping with this hypothesis, cytochalasin B, which prevents both cell movement and adhesion, completely inhibited generation of [Ca2+]i transients. To determine if the movement alone or adhesion alone is responsible for [Ca2+]i activity, we treated cells with antibodies against the beta chain (CD18, beta 2) or the alpha subunit (CD11b, alpha m) of the dominant leukocyte integrin (CR3). Antibody-treated cells showed normal extension of pseudopods but impaired ability to adhere. Inhibition of adhesion in this way inhibited [Ca2+]i activity. Taken together these results suggest that following sequence of events after contact of neutrophils with surfaces: (a) cell movement and shape change lead to enhanced contact of integrins with the surface; and (b) integrins-mediated adhesion generates multiple [Ca2+]i transients. The [Ca2+]i transients may then control exocytic events associated with movement and may provide a link between adherence and activation or priming of neutrophils to other stimuli.
format Text
id pubmed-2288892
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22888922008-05-01 Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family J Cell Biol Articles Multiple spontaneous transient elevations of cytosolic-free calcium ([Ca2+]i) are observed in single human neutrophils during adherence. The interrelation between adherence and spontaneous [Ca2+]i transients was analyzed by simultaneous monitoring of [Ca2+]i and cell morphology. Fluorescent images of fura 2-loaded neutrophils attached to albumin- coated glass were recorded with a high sensitivity CCD camera while [Ca2+]i was assessed with a dual excitation microfluorimetry. The majority of the initially round cells studied showed changes in shape which started either before or at the same time as the onset of the [Ca2+]i transients. These data suggested that a rise in [Ca2+]i is not a prerequisite for shape change. This conclusion was confirmed by observation of movement and spreading in cells whose [Ca2+]i transients were abolished by chelation of extracellular Ca2+. Instead, our data suggest that spreading or adhesion itself initiates the [Ca2+]i activity. In keeping with this hypothesis, cytochalasin B, which prevents both cell movement and adhesion, completely inhibited generation of [Ca2+]i transients. To determine if the movement alone or adhesion alone is responsible for [Ca2+]i activity, we treated cells with antibodies against the beta chain (CD18, beta 2) or the alpha subunit (CD11b, alpha m) of the dominant leukocyte integrin (CR3). Antibody-treated cells showed normal extension of pseudopods but impaired ability to adhere. Inhibition of adhesion in this way inhibited [Ca2+]i activity. Taken together these results suggest that following sequence of events after contact of neutrophils with surfaces: (a) cell movement and shape change lead to enhanced contact of integrins with the surface; and (b) integrins-mediated adhesion generates multiple [Ca2+]i transients. The [Ca2+]i transients may then control exocytic events associated with movement and may provide a link between adherence and activation or priming of neutrophils to other stimuli. The Rockefeller University Press 1991-03-02 /pmc/articles/PMC2288892/ /pubmed/1900302 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
title Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
title_full Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
title_fullStr Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
title_full_unstemmed Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
title_short Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
title_sort multiple elevations of cytosolic-free ca2+ in human neutrophils: initiation by adherence receptors of the integrin family
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288892/
https://www.ncbi.nlm.nih.gov/pubmed/1900302