Cargando…

Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation

Biochemical fractionation procedures previously shown to remove 95% of cellular protein, DNA, and phospholipid, were combined with fluorescence in situ hybridization to provide a critical evaluation of the retention and spatial preservation of specific primary transcripts within the chromatin-deplet...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288899/
https://www.ncbi.nlm.nih.gov/pubmed/1705562
_version_ 1782152133940871168
collection PubMed
description Biochemical fractionation procedures previously shown to remove 95% of cellular protein, DNA, and phospholipid, were combined with fluorescence in situ hybridization to provide a critical evaluation of the retention and spatial preservation of specific primary transcripts within the chromatin-depleted nuclear substructure, operationally defined as the nuclear "matrix." This unique approach made it possible to directly address whether nuclear extraction procedures preserve, create, or destroy ribonucleoprotein filament structures. Comparison of nuclei before and after fractionation demonstrated that localized foci or "tracks" of specific nRNA are unambiguously retained in the nuclear matrix preparation. Two well-characterized nuclear fractionation procedures were used and three Epstein-Barr virus-infected cell types investigated, including latently and permissively infected cells carrying integrated or episomal genomes. The EBV primary transcripts as well as nucleolar RNA were preserved within the remaining nuclear substructure with unambiguous spatial and quantitative fidelity. Image processing and quantitative microfluorimetry, together with [3H]thymidine labeling of DNA, show that essentially 100% of the RNA signal intensity remained after removal of 85% of the DNA. That the native RNA distribution was unchanged was shown in other experiments in which the same individual nRNA tracks were examined before and after fractionation. Results conclusively demonstrate that the tight restriction of RNA to highly localized sites is independent of bulk DNA removal and of extensive extraction of proteins and phospholipids. Hence, this work provides direct visual evidence that the primary transcripts studied are localized via their binding to, or comprising part of, non-chromatin nuclear substructure.
format Text
id pubmed-2288899
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22888992008-05-01 Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation J Cell Biol Articles Biochemical fractionation procedures previously shown to remove 95% of cellular protein, DNA, and phospholipid, were combined with fluorescence in situ hybridization to provide a critical evaluation of the retention and spatial preservation of specific primary transcripts within the chromatin-depleted nuclear substructure, operationally defined as the nuclear "matrix." This unique approach made it possible to directly address whether nuclear extraction procedures preserve, create, or destroy ribonucleoprotein filament structures. Comparison of nuclei before and after fractionation demonstrated that localized foci or "tracks" of specific nRNA are unambiguously retained in the nuclear matrix preparation. Two well-characterized nuclear fractionation procedures were used and three Epstein-Barr virus-infected cell types investigated, including latently and permissively infected cells carrying integrated or episomal genomes. The EBV primary transcripts as well as nucleolar RNA were preserved within the remaining nuclear substructure with unambiguous spatial and quantitative fidelity. Image processing and quantitative microfluorimetry, together with [3H]thymidine labeling of DNA, show that essentially 100% of the RNA signal intensity remained after removal of 85% of the DNA. That the native RNA distribution was unchanged was shown in other experiments in which the same individual nRNA tracks were examined before and after fractionation. Results conclusively demonstrate that the tight restriction of RNA to highly localized sites is independent of bulk DNA removal and of extensive extraction of proteins and phospholipids. Hence, this work provides direct visual evidence that the primary transcripts studied are localized via their binding to, or comprising part of, non-chromatin nuclear substructure. The Rockefeller University Press 1991-03-02 /pmc/articles/PMC2288899/ /pubmed/1705562 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
title Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
title_full Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
title_fullStr Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
title_full_unstemmed Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
title_short Preservation of specific RNA distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
title_sort preservation of specific rna distribution within the chromatin-depleted nuclear substructure demonstrated by in situ hybridization coupled with biochemical fractionation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288899/
https://www.ncbi.nlm.nih.gov/pubmed/1705562