Cargando…
An internally positioned signal can direct attachment of a glycophospholipid membrane anchor
All known glycophosphatidylinositol (GPI)-anchored membrane proteins contain a COOH-terminal hydrophobic domain necessary for signalling anchor attachment. To examine the requirement that this signal be at the COOH terminus of the protein, we constructed a chimeric protein, DAFhGH, in which human gr...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288913/ https://www.ncbi.nlm.nih.gov/pubmed/1706725 |
_version_ | 1782152137309945856 |
---|---|
collection | PubMed |
description | All known glycophosphatidylinositol (GPI)-anchored membrane proteins contain a COOH-terminal hydrophobic domain necessary for signalling anchor attachment. To examine the requirement that this signal be at the COOH terminus of the protein, we constructed a chimeric protein, DAFhGH, in which human growth hormone (hGH) was fused to the COOH terminus of decay accelerating factor (DAF) (a GPI-anchored protein), thereby placing the GPI signal in the middle of the chimeric protein. We show that the fusion protein appears to be processed at the normal DAF processing site in COS cells, producing GPI-anchored DAF on the cell surface. This result indicates that the GPI signal does not have to be at the COOH terminus to direct anchor addition, suggesting that the absence of a hydrophilic COOH-terminal extension (beyond the hydrophobic domain) is not a necessary requirement for GPI anchoring. A similar DAFhGH fusion, containing an internal GPI signal in which the DAF hydrophobic domain was replaced with the signal peptide of hGH, also produced GPI-anchored cell surface DAF. The signal for GPI attachment thus exhibits neither position specificity nor sequence specificity. In addition, mutant DAF or DAFhGH constructs lacking an NH2-terminal signal peptide failed to produce GPI-anchored protein, suggesting that membrane translocation is necessary for anchor addition. |
format | Text |
id | pubmed-2288913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1991 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-22889132008-05-01 An internally positioned signal can direct attachment of a glycophospholipid membrane anchor J Cell Biol Articles All known glycophosphatidylinositol (GPI)-anchored membrane proteins contain a COOH-terminal hydrophobic domain necessary for signalling anchor attachment. To examine the requirement that this signal be at the COOH terminus of the protein, we constructed a chimeric protein, DAFhGH, in which human growth hormone (hGH) was fused to the COOH terminus of decay accelerating factor (DAF) (a GPI-anchored protein), thereby placing the GPI signal in the middle of the chimeric protein. We show that the fusion protein appears to be processed at the normal DAF processing site in COS cells, producing GPI-anchored DAF on the cell surface. This result indicates that the GPI signal does not have to be at the COOH terminus to direct anchor addition, suggesting that the absence of a hydrophilic COOH-terminal extension (beyond the hydrophobic domain) is not a necessary requirement for GPI anchoring. A similar DAFhGH fusion, containing an internal GPI signal in which the DAF hydrophobic domain was replaced with the signal peptide of hGH, also produced GPI-anchored cell surface DAF. The signal for GPI attachment thus exhibits neither position specificity nor sequence specificity. In addition, mutant DAF or DAFhGH constructs lacking an NH2-terminal signal peptide failed to produce GPI-anchored protein, suggesting that membrane translocation is necessary for anchor addition. The Rockefeller University Press 1991-04-01 /pmc/articles/PMC2288913/ /pubmed/1706725 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles An internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
title | An internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
title_full | An internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
title_fullStr | An internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
title_full_unstemmed | An internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
title_short | An internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
title_sort | internally positioned signal can direct attachment of a glycophospholipid membrane anchor |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288913/ https://www.ncbi.nlm.nih.gov/pubmed/1706725 |