Cargando…

Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip

To identify intracellular Ca2+ stores, we have mapped (by cryosection immunofluorescence and immunogold labeling) the distribution in the chicken cerebellar cortex of an essential component, the main low affinity-high capacity Ca2+ binding protein which in this tissue has been recently shown undisti...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288980/
https://www.ncbi.nlm.nih.gov/pubmed/1827445
_version_ 1782152152093818880
collection PubMed
description To identify intracellular Ca2+ stores, we have mapped (by cryosection immunofluorescence and immunogold labeling) the distribution in the chicken cerebellar cortex of an essential component, the main low affinity-high capacity Ca2+ binding protein which in this tissue has been recently shown undistinguishable from muscle calsequestrin (Volpe, P., B. H. Alderson-Lang, L. Madeddu, E. Damiani, J. H. Collins, and A. Margreth. 1990. Neuron. 5:713-721). Appreciable levels of the protein were found exclusively within Purkinje neurons, distributed to the cell body, the axon, and the elaborate dendritic tree, with little labeling, however, of dendritic spines. At the EM level the protein displayed a dual localization: within the ER (rough- and smooth-surfaced cisternae, including the cisternal stacks recently shown [in the rat] to be highly enriched in receptors for inositol 1,4,5-triphosphate) and, over 10- fold more concentrated, within a population of moderately dense, membrane-bound small vacuoles and tubules, identified as calciosomes. These latter structures were widely distributed both in the cell body (approximately 1% of the cross-sectional area, particularly concentrated near the Golgi complex) and in the dendrites, up to the entrance of the spines. The distribution of calsequestrin was compared to those of another putative component of the Ca2+ stores, the membrane pump Ca2+ ATPase, and of the ER resident lumenal protein, Bip. Ca2+ ATPase was expressed by both calciosomes and regular ER cisternae, but excluded from cisternal stacks; Bip was abundant within the ER lumena (cisternae and stacks) and very low within calciosomes (average calsequestrin/Bip immunolabeling ratios were approximately 0.5 and 36.5 in the two types of structure, respectively). These results suggest that ER cisternal stacks do not represent independent Ca2+ stores, but operate coordinately with the adjacent, lumenally continuous ER cisternae. The ER and calciosomes could serve as rapidly exchanging Ca2+ stores, characterized however by different properties, in particular, by the greater Ca2+ accumulation potential of calciosomes. Hypotheses of calciosome biogenesis (directly from the ER or via the Golgi complex) are discussed.
format Text
id pubmed-2288980
institution National Center for Biotechnology Information
language English
publishDate 1991
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-22889802008-05-01 Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip J Cell Biol Articles To identify intracellular Ca2+ stores, we have mapped (by cryosection immunofluorescence and immunogold labeling) the distribution in the chicken cerebellar cortex of an essential component, the main low affinity-high capacity Ca2+ binding protein which in this tissue has been recently shown undistinguishable from muscle calsequestrin (Volpe, P., B. H. Alderson-Lang, L. Madeddu, E. Damiani, J. H. Collins, and A. Margreth. 1990. Neuron. 5:713-721). Appreciable levels of the protein were found exclusively within Purkinje neurons, distributed to the cell body, the axon, and the elaborate dendritic tree, with little labeling, however, of dendritic spines. At the EM level the protein displayed a dual localization: within the ER (rough- and smooth-surfaced cisternae, including the cisternal stacks recently shown [in the rat] to be highly enriched in receptors for inositol 1,4,5-triphosphate) and, over 10- fold more concentrated, within a population of moderately dense, membrane-bound small vacuoles and tubules, identified as calciosomes. These latter structures were widely distributed both in the cell body (approximately 1% of the cross-sectional area, particularly concentrated near the Golgi complex) and in the dendrites, up to the entrance of the spines. The distribution of calsequestrin was compared to those of another putative component of the Ca2+ stores, the membrane pump Ca2+ ATPase, and of the ER resident lumenal protein, Bip. Ca2+ ATPase was expressed by both calciosomes and regular ER cisternae, but excluded from cisternal stacks; Bip was abundant within the ER lumena (cisternae and stacks) and very low within calciosomes (average calsequestrin/Bip immunolabeling ratios were approximately 0.5 and 36.5 in the two types of structure, respectively). These results suggest that ER cisternal stacks do not represent independent Ca2+ stores, but operate coordinately with the adjacent, lumenally continuous ER cisternae. The ER and calciosomes could serve as rapidly exchanging Ca2+ stores, characterized however by different properties, in particular, by the greater Ca2+ accumulation potential of calciosomes. Hypotheses of calciosome biogenesis (directly from the ER or via the Golgi complex) are discussed. The Rockefeller University Press 1991-05-02 /pmc/articles/PMC2288980/ /pubmed/1827445 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip
title Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip
title_full Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip
title_fullStr Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip
title_full_unstemmed Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip
title_short Intracellular Ca2+ stores in chicken Purkinje neurons: differential distribution of the low affinity-high capacity Ca2+ binding protein, calsequestrin, of Ca2+ ATPase and of the ER lumenal protein, Bip
title_sort intracellular ca2+ stores in chicken purkinje neurons: differential distribution of the low affinity-high capacity ca2+ binding protein, calsequestrin, of ca2+ atpase and of the er lumenal protein, bip
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2288980/
https://www.ncbi.nlm.nih.gov/pubmed/1827445